首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Preferential synthesis of diacyl and alkenylacyl ethanolamine and choline glycerophospholipids in rabbit platelet membranes
Authors:S Morikawa  S Taniguchi  K Fujii  H Mori  K Kumada  M Fujiwara  M Fujiwara
Abstract:In rabbit platelet membranes, the contents of alkenylacyl phospholipids (plasmalogen) were 56% of phosphatidylethanolamine and 3% of phosphatidylcholine. This uneven distribution of plasmalogens in each phospholipid class could be attributed to the different substrate specificity of ethanolaminephosphotransferase (EC 2.7.8.1) and cholinephosphotransferase (EC 2.7.8.2). The properties of the enzymes were studied, using endogenous diglycerides and CDP-3H]ethanolamine or CDP-14C]choline as substrates. The newly formed phospholipids were mainly diacyl and alkenylacyl and only rarely alkylacyl type. The ratios of the labeled alkenylacyl to diacyl type of phospholipids clearly varied with the concentrations of CDP-ethanolamine or CDP-choline. When 1, 10, and 30 microM CDP-3H]ethanolamine were used, the labeled phospholipids contained 53, 37, and 27% of the alkenylacyl type, respectively. The apparent Km for CDP-ethanolamine to synthesize alkenylacyl and diacyl types were 2.2 and 8.1 microM. On the other hand, when 1, 10, and 30 microM CDP-14C]choline were used, the labeled lipids contained 10, 17, and 24% alkenylacyl type, respectively. The apparent Km for CDP-choline to synthesize alkenylacyl and diacyl types were 24 and 4.3 microM. Further, the syntheses of diacyl type of phosphatidylethanolamine and the alkenylacyl type of phosphatidylcholine were markedly inhibited by unlabeled CDP-choline and CDP-ethanolamine, respectively. The two enzymes had opposite substrate specificities, and ethanolaminephosphotransferase showed a high preference to plasmalogen synthesis, especially in the presence of CDP-choline.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号