首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Plantago asiatica L. seeds extract protects against cardiomyocyte injury in isoproterenol- induced cardiac hypertrophy by inhibiting excessive autophagy and apoptosis in mice
Institution:1. Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China;2. School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China;1. Department of Biochemistry and Molecular Biology, Guangdong Pharmaceutical University, Guangzhou 510006, China;2. Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China;3. Hunan Traditional Chinese Medical College, Zhuzhou, 412012, China;4. Guangdong General Hospital, Guangzhou 510000, China;5. Guangdong Province Key Laboratory for Biotechnology Drug Candidates and School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China;1. The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;2. Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
Abstract:BackgroundCardiac hypertrophy is the early stage of many heart diseases, such as coronary heart disease, hypertension, valvular dysfunction and cardiomyopathy. Cardiomyocyte autophagy and apoptosis play an important role in the process of cardiac hypertrophic response. Plantago asiatica L. seeds extract (PASE) is prepared from a traditional herbal medicine in Asia with tremendous pharmacological activities. However, whether PASE could relieve cardiac hypertrophy has not been elucidated. The present study is aimed to investigate the effect of PASE on cardiac hypertrophy and explore its potential underlying mechanism.MethodsCardiac hypertrophy was induced in C57BL/6 mice by subcutaneous injection of isoproterenol (ISO) for two weeks. Meanwhile, the mice were intraperitoneally injected with PASE at dosages of 20, 40 and 80 mg/kg/day. Cardiac hypertrophy was evaluated by echocardiographic examination, haematoxylin and eosin staining and quantitative real-time polymerase chain reaction. Expressions of proteins involved in autophagy and apoptosis such as Beclin1, p62, LC3II, Bax, Bcl-2 and Cleaved-caspase-3 were detected by western blot analysis. Western blot, transient transfection, acridine orange staining, TUNEL staining and autophagy inducer were used to observe the effect and explore the mechanism of PASE on cardiomyocyte and H9c2 cells with excessive autophagy and apoptosis induced by ISO.ResultsISO induction for two weeks disturbed the myocardial contractility and cardiac function of left ventricles of mice. PASE treated mice showed significantly improved cardiac function indexes, including EF, FS, SV and CO, compared with the ISO group. Treatment with PASE also decreased the heart weight/body weight ratio and cardiomyocyte size, and downregulated the mRNA and protein expressions of hypertrophic markers ANP, BNP, and β-MHC. Furthermore, the changes of autophagy and apoptosis markers, such as LC3II, Beclin1, p62, Bcl-2, Bax and Cleaved-caspase-3 induced by ISO were resumed by PASE treatment. Consistently, PASE demonstrated similar effects on ISO-induced H9c2 cells as it did in vivo. In addition, PASE could counteract the increased autophagy induced by the autophagy inducer, rapamycin.ConclusionPASE attenuated ISO-induced cardiac hypertrophy in mice by inhibiting excessive autophagy and apoptosis in cardiomyocytes. The novel findings may pave the way for the clinical usage of PASE for the prevention of heart diseases related with cardiac hypertrophy.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号