首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Preliminary investigation on iodine nutrition in captive giant pandas
Institution:1. Chengdu Research Base of Giant Panda Breeding, 610081, Chengdu, China;2. Key Laboratory of Trace Element Nutrition of National Health Commission of the People''s Republic of China, Department of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 100050, Beijing, China;3. Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 610081, Chengdu, China;4. Sichuan Academy of Giant Panda, 610081, Chengdu, China;5. School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
Abstract:Background/ObjectiveThe giant panda belongs to the family Ursidae and, as a species of bear, still retains the simple digestive system of a Carnivoran. However, under the pressure of a specific habitat they had to adapt to a plant mono-diet consisting of bamboo with different species and growth stages around the year. A plant-based diet has relatively low iodine content with risk of iodine deficiency. Furthermore, bamboo contains cyanogenic glycosides releasing cyanide whose detoxification metabolite the thiocyanate acts as antagonist against iodine uptake and storage in the thyroid. To date very little is known about the iodine nutritional status of the giant panda, thus this study was conducted to receive the first information about the iodine nutrition of captive giant panda.Subjects/MethodsHere we investigated the iodine content of bamboo with different plant parts/vegetation stage and species and further compounds of the captive giant panda diet. Next, the urinary iodine (UI) and urinary thiocyanate (UT) levels of infant, sub-adult, adult and geriatric captive giant pandas was measured during the periods when the pandas consume both bamboo leaves- and culm (bamboo leaf-culm stage). Afterwards, the UI of 19 adult giant pandas was measured again for the different iodine intake during bamboo shoot stage. Finally, in this study part also the fecal iodine concentration was analyzed for calculation of total iodine excretion in relation to the iodine intake.ResultsBamboo leaves had the highest iodine content (453 μg/kg dry matter (DM)), followed by the shoots (84 μg/kg DM, p < 0.05), while bamboo culm had the lowest value (12 μg/kg DM, p < 0.05). During bamboo leaf-culm stage, giant pandas of different age groups had different UI and UT levels (p < 0.05). Furthermore, UI and UT were positively correlated among sub-adult, adult and geriatric giant pandas (p < 0.05). In adult giant pandas during bamboo shoot stage, the iodine excretion in feces was not different from that in urine while their total iodine excretion was less than their iodine intake (p < 0.05). Moreover, during bamboo shoot stage, the UI level of adult giant pandas was much lower than noted during bamboo leaf-culm stage (p < 0.05).ConclusionsOur results indicate that UI of captive giant pandas was related to their age as well as to the vegetation stage/part of bamboo they consumed reflecting a different periodic iodine supply. Thiocyanate and fecal excretion should be emphasized when considering the iodine nutrition of giant pandas.
Keywords:Urinary iodine  Giant panda  Bamboo  Thiocyanate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号