首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Histopathological changes and oxidative damage in type I and type II muscle fibers in rats undergoing paradoxical sleep deprivation
Institution:1. Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK;2. Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK;3. Metabolic Department Great Ormond Street Hospital, UCL Great Ormond Street Institute of Child Health, London, UK;4. NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
Abstract:Backgroundprevious studies have shown that muscle atrophy is observed after sleep deprivation (SD) protocols; however, the mechanisms responsible are not fully understood. Muscle trophism can be modulated by several factors, including energy balance (positive or negative), nutritional status, oxidative stress, the level of physical activity, and disuse. The metabolic differences that exist in different types of muscle fiber may also be the result of different adaptive responses. To better understand these mechanisms, we evaluated markers of oxidative damage and histopathological changes in different types of muscle fibers in sleep-deprived rats.MethodsTwenty male Wistar EPM-1 rats were randomly allocated in two groups: a control group (CTL group; n = 10) and a sleep deprived group (SD group; n = 10). The SD group was submitted to continuous paradoxical SD for 96  h; the soleus (type I fibers) and plantar (type II fiber) muscles were analyzed for histopathological changes, trophism, lysosomal activity, and oxidative damage. Oxidative damage was assessed by lipid peroxidation and nuclear labeling of 8-OHdG.ResultsThe data demonstrated that SD increased the nuclear labeling of 8-OHdG and induced histopathological changes in both muscles, being more evident in the soleus muscle. In the type I fibers there was signs of tissue degeneration, inflammatory infiltrate and tissue edema. Muscle atrophy was observed in both muscles. The concentration of malondialdehyde, and cathepsin L activity only increased in type I fibers after SD.ConclusionThese data indicate that the histopathological changes observed after 96 h of SD in the skeletal muscle occur by different processes, according to the type of muscle fiber, with muscles predominantly composed of type I fibers undergoing greater oxidative damage and catabolic activity, as evidenced by a larger increase in 8-OHdG labeling, lipid peroxidation, and lysosomal activity.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号