首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Metabolomic Profiles of Body Mass Index in the Framingham Heart Study Reveal Distinct Cardiometabolic Phenotypes
Authors:Jennifer E Ho  Martin G Larson  Anahita Ghorbani  Susan Cheng  Ming-Huei Chen  Michelle Keyes  Eugene P Rhee  Clary B Clish  Ramachandran S Vasan  Robert E Gerszten  Thomas J Wang
Abstract:

Background

Although obesity and cardiometabolic traits commonly overlap, underlying pathways remain incompletely defined. The association of metabolite profiles across multiple cardiometabolic traits may lend insights into the interaction of obesity and metabolic health. We sought to investigate metabolic signatures of obesity and related cardiometabolic traits in the community using broad-based metabolomic profiling.

Methods and Results

We evaluated the association of 217 assayed metabolites and cross-sectional as well as longitudinal changes in cardiometabolic traits among 2,383 Framingham Offspring cohort participants. Body mass index (BMI) was associated with 69 of 217 metabolites (P<0.00023 for all), including aromatic (tyrosine, phenylalanine) and branched chain amino acids (valine, isoleucine, leucine). Additional metabolic pathways associated with BMI included the citric acid cycle (isocitrate, alpha-ketoglutarate, aconitate), the tryptophan pathway (kynurenine, kynurenic acid), and the urea cycle. There was considerable overlap in metabolite profiles between BMI, abdominal adiposity, insulin resistance IR] and dyslipidemia, modest overlap of metabolite profiles between BMI and hyperglycemia, and little overlap with fasting glucose or elevated blood pressure. Metabolite profiles were associated with longitudinal changes in fasting glucose, but the involved metabolites (ornithine, 5-HIAA, aminoadipic acid, isoleucine, cotinine) were distinct from those associated with baseline glucose or other traits. Obesity status appeared to “modify” the association of 9 metabolites with IR. For example, bile acid metabolites were strongly associated with IR among obese but not lean individuals, whereas isoleucine had a stronger association with IR in lean individuals.

Conclusions

In this large-scale metabolite profiling study, body mass index was associated with a broad range of metabolic alterations. Metabolite profiling highlighted considerable overlap with abdominal adiposity, insulin resistance, and dyslipidemia, but not with fasting glucose or blood pressure traits.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号