首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dissection of the GTPase mechanism of Ras protein by MD analysis of Ras mutants
Authors:Friedman Zeev Y  Devary Yoram
Institution:Department of Bioinformatics, Jerusalem College of Technology, Jerusalem, Israel. zeevf@jct.ac.il
Abstract:Controlling the hydrolysis rate of GTP bound to the p21ras protein is crucial for the delicate timing of many biological processes. A few mechanisms were suggested for the hydrolysis of GTP. To gain more insight into the individual elementary events of GTP hydrolysis, we carried out molecular dynamic analysis of wild-type p21ras and some of its mutants. It was recently shown that Ras-related proteins and mutants generally follow a linear free energy relationship (LFER) relating the rate of reaction to the pK(a) of the gamma-phosphate group of the bound GTP, indicating that proton transfer from the attacking water to the GTP is the first elementary event in the GTPase mechanism. However, some exceptions were observed. Thus, the Gly12 --> Aspartic p21ras (G12D) mutant had a very low GTPase activity although its pK(a) was very close to that of the wild-type ras. Here we compared the molecular dynamics (MD) of wild-type Ras and G12D, showing that in the mutant the catalytic water molecule is displaced to a position where proton transfer to GTP is unfavorable. These results suggest that the mechanism of GTPase is indeed composed of an initial proton abstraction from water by the GTP, followed by a nucleophilic attack of the hydroxide ion on the gamma-phosphorus of GTP.
Keywords:p21ras  Gly 12 oncogenic mutation  signal transduction  G‐proteins  hydrolysis
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号