首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Levinthal paradox of the interactome
Authors:Tompa Peter  Rose George D
Institution:VIB Department of Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium. ptompa@vub.ac.be
Abstract:The central biological question of the 21st century is: how does a viable cell emerge from the bewildering combinatorial complexity of its molecular components? Here, we estimate the combinatorics of self-assembling the protein constituents of a yeast cell, a number so vast that the functional interactome could only have emerged by iterative hierarchic assembly of its component sub-assemblies. A protein can undergo both reversible denaturation and hierarchic self-assembly spontaneously, but a functioning interactome must expend energy to achieve viability. Consequently, it is implausible that a completely “denatured” cell could be reversibly renatured spontaneously, like a protein. Instead, new cells are generated by the division of pre-existing cells, an unbroken chain of renewal tracking back through contingent conditions and evolving responses to the origin of life on the prebiotic earth. We surmise that this non-deterministic temporal continuum could not be reconstructed de novo under present conditions.
Keywords:interactome  protein–protein interaction  Levinthal  protein folding  irreversibility  assembly pathway  steady state  combinatorics
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号