首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular and cellular characterisation of LjAMT2;1, an ammonium transporter from the model legume Lotus japonicus
Authors:Simon-Rosin  Ulrike  Wood  Craig  Udvardi  Michael K.
Affiliation:(1) Molecular Plant Nutrition Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
Abstract:Two related families of ammonium transporters have been identified and partially characterised in plants in the past; the AMT1 and AMT2 families. Most attention has focused on the larger of the two families, the AMT1 family, which contains members that are likely to fulfil different, possibly overlapping physiological roles in plants, including uptake of ammonium from the soil. The possible physiological functions of AMT2 proteins are less clear. Lack of data on cellular and tissue location of gene expression, and the intracellular location of proteins limit our understanding of the physiological role of all AMT proteins. We have cloned the first AMT2 family member from a legume, LjAMT2;1 of Lotus japonicus, and demonstrated that it functions as an ammonium transporter by complementing a yeast mutant defective in ammonium uptake. However, like AtAMT2 from Arabidopsis, and unlike AMT1 transporters from several plant species, LjAMT2;1 was unable to transport methylammonium. The LjAMT2;1 gene was found to be expressed constitutively throughout Lotus plants. In situ RNA hybridisation revealed LjAMT2;1 expression in all major tissues of nodules. Transient expression of LjAMT2;1-GFP fusion protein in plant cells indicated that the transporter is located on the plasma membrane. In view of the fact that nodules derive ammonium internally, rather than from the soil, the results implicate LjAMT2;1 in the recovery of ammonium lost from nodule cells by efflux. A similar role may be fulfilled in other organs, especially leaves, which liberate ammonium during normal metabolism.
Keywords:ammonium transport  legume root nodule  Lotus japonicus  mRNA in situ hybridisation  nitrogen fixation  sub-cellular localisation
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号