首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Developmental regulation and spatial expression of a plastidial fatty acid desaturase from Olea europaea
Institution:1. State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China;2. University of the Chinese Academy of Sciences, Beijing 100039, P. R. China;3. Longrun Pu-er Tea Academy, Yunnan Agricultural University, Kunming 650201, P. R. China;4. College of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230038, P. R. China
Abstract:Trienoic fatty acids are major components of chloroplast membranes and are also precursors of the oxylipins, such as methyl jasmonate, that play important roles in signal transduction pathways relating to plant development and responses to stress. A cDNA encoding a plastidial ω-3 fatty acid desaturase responsible for trienoic formation has been isolated from a library made from ripening fruits of Olea europaea L. The predicted protein contains 436 amino acid residues including a consensus chloroplast specific transit peptide. Alignment with other desaturase sequences showed strong homology with the plastidial ω-3 desaturases fad7 and fad8. Since fad8 is only expressed at low temperatures and the olive fruit were developing at > 20 °C, it is concluded that the isolated cDNA is most likely to be derived from fad7. Northern hybridisation showed a transient expression of the putative fad7 gene at early stages of drupe (5–7 WAF) and mesocarp (16–19 WAF) development. In situ hybridisation showed particularly prominent expression in the palisade and vascular tissue of young leaves, the embryo sac and transmitting tissue of the carpel, and the tapetum, pollen grains and vascular tissue of anthers. The distinctive spatial, temporal and environmental regulation of the putative fad7 gene is consistent with major roles, not only in thylakoid membrane formation, but also in the provision of α-linolenate-derived signalling molecules that are particularly important in plant tissues involved in transportation and reproduction.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号