首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modeling the dynamic transmission of dengue fever: investigating disease persistence
Authors:de Castro Medeiros Líliam César  Castilho César Augusto Rodrigues  Braga Cynthia  de Souza Wayner Vieira  Regis Leda  Monteiro Antonio Miguel Vieira
Institution:Centro de Ciência do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais, INPE, S?o José dos Campos, Brazil. liliam.castro@inpe.br
Abstract:

Background

Dengue is a disease of great complexity, due to interactions between humans, mosquitoes and various virus serotypes as well as efficient vector survival strategies. Thus, understanding the factors influencing the persistence of the disease has been a challenge for scientists and policy makers. The aim of this study is to investigate the influence of various factors related to humans and vectors in the maintenance of viral transmission during extended periods.

Methodology/Principal Findings

We developed a stochastic cellular automata model to simulate the spread of dengue fever in a dense community. Each cell can correspond to a built area, and human and mosquito populations are individually monitored during the simulations. Human mobility and renewal, as well as vector infestation, are taken into consideration. To investigate the factors influencing the maintenance of viral circulation, two sets of simulations were performed: (1st) varying human renewal rates and human population sizes and (2nd) varying the house index (fraction of infested buildings) and vector per human ratio. We found that viral transmission is inhibited with the combination of small human populations with low renewal rates. It is also shown that maintenance of viral circulation for extended periods is possible at low values of house index. Based on the results of the model and on a study conducted in the city of Recife, Brazil, which associates vector infestation with Aedes aegytpi egg counts, we question the current methodology used in calculating the house index, based on larval survey.

Conclusions/Significance

This study contributed to a better understanding of the dynamics of dengue subsistence. Using basic concepts of metapopulations, we concluded that low infestation rates in a few neighborhoods ensure the persistence of dengue in large cities and suggested that better strategies should be implemented to obtain measures of house index values, in order to improve the dengue monitoring and control system.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号