首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Multimerization of Glycosylphosphatidylinositol-anchored High Density Lipoprotein-binding Protein 1 (GPIHBP1) and Familial Chylomicronemia from a Serine-to-Cysteine Substitution in GPIHBP1 Ly6 Domain
Authors:Wanee Plengpanich  Stephen G Young  Weerapan Khovidhunkit  André Bensadoun  Hirankorn Karnman  Michael Ploug  Henrik G?rdsvoll  Calvin S Leung  Oludotun Adeyo  Mikael Larsson  Suwanna Muanpetch  Supannika Charoen  Loren G Fong  Sathit Niramitmahapanya  Anne P Beigneux
Abstract:GPIHBP1, a glycosylphosphatidylinositol-anchored glycoprotein of microvascular endothelial cells, binds lipoprotein lipase (LPL) within the interstitial spaces and transports it across endothelial cells to the capillary lumen. The ability of GPIHBP1 to bind LPL depends on the Ly6 domain, a three-fingered structure containing 10 cysteines and a conserved pattern of disulfide bond formation. Here, we report a patient with severe hypertriglyceridemia who was homozygous for a GPIHBP1 point mutation that converted a serine in the GPIHBP1 Ly6 domain (Ser-107) to a cysteine. Two hypertriglyceridemic siblings were homozygous for the same mutation. All three homozygotes had very low levels of LPL in the preheparin plasma. We suspected that the extra cysteine in GPIHBP1-S107C might prevent the trafficking of the protein to the cell surface, but this was not the case. However, nearly all of the GPIHBP1-S107C on the cell surface was in the form of disulfide-linked dimers and multimers, whereas wild-type GPIHBP1 was predominantly monomeric. An insect cell GPIHBP1 expression system confirmed the propensity of GPIHBP1-S107C to form disulfide-linked dimers and to form multimers. Functional studies showed that only GPIHBP1 monomers bind LPL. In keeping with that finding, there was no binding of LPL to GPIHBP1-S107C in either cell-based or cell-free binding assays. We conclude that an extra cysteine in the GPIHBP1 Ly6 motif results in multimerization of GPIHBP1, defective LPL binding, and severe hypertriglyceridemia.
Keywords:Disulfide  Genetics  Lipolysis  Protein Folding  Protein-Protein Interaction  Hypertriglyceridemia  Lipoprotein Lipase  Mutation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号