首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling environment for numerical simulation of applied electric fields on biological cells
Authors:Suzuki Daniela Ota Hisayasu  Ramos Airton  Marques Jefferson Luiz Brum
Affiliation:Department of Electrical Engineering, Institute of Biomedical Engineering, Federal University of Santa Catarina (UFSC), Santa Catarina, Brazil.
Abstract:The application of electric pulses in cells increases membrane permeability. This phenomenon is called electroporation. Current electroporation models do not explain all experimental findings: part of this problem is due to the limitations of numerical methods. The Equivalent Circuit Method (ECM) was developed in an attempt to solve electromagnetic problems in inhomogeneous and anisotropic media. ECM is based on modeling of the electrical transport properties of the medium by lumped circuit elements as capacitance, conductance, and current sources, representing the displacement, drift, and diffusion current, respectively. The purpose of the present study was to implement a 2-D cell Model Development Environment (MDE) of ionic transport process, local anisotropy around cell membranes, biological interfaces, and the dispersive behaviour of tissues. We present simulations of a single cell, skeletal muscle, and polygonal cell arrangement. Simulation of polygonal form indicates that the potential distribution depends on the geometrical form of cell. The results demonstrate the importance of the potential distributions in biological cells to provide strong evidences for the understanding of electroporation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号