首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Novel mechanism of hydrolysis of therapeutic beta-lactams by Stenotrophomonas maltophilia L1 metallo-beta-lactamase.
Authors:J Spencer  A R Clarke  T R Walsh
Institution:Department of Pathology and Microbiology, University of Bristol School of Medical Sciences, University Walk, Bristol BS8 1TD, United Kingdom. Jim.Spencer@bristol.ac.uk
Abstract:Stopped-flow tryptophan fluorescence under single turnover and pseudo-first-order conditions has been used to investigate the kinetic mechanism of beta-lactam hydrolysis by the Stenotrophomonas maltophilia L1 metallo-beta-lactamase. For the cephalosporin substrates nitrocefin and cefaclor and the carbapenem meropenem, a substantial quench of fluorescence is observed on association of substrate with enzyme. We have assigned this to a rearrangement event subsequent to formation of an initial collision complex. For the colorimetric compound nitrocefin, decay of this dark inter- mediate represents the overall rate-determining step for the reaction and is equivalent to decay of a previously observed state in which the beta-lactam amide bond has already been cleaved. For both cefaclor and meropenem, the rate-determining step for hydrolysis is loss of a second, less quenched state, in which, however, the beta-lactam amide bond remains intact. We suggest, therefore, that the mechanism of hydrolysis of nitrocefin by binuclear metallo-beta-lactamases may be atypical and that cleavage of the beta-lactam amide bond is the rate-determining step for breakdown of the majority of beta-lactam substrates by the L1 enzyme.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号