首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Conformational changes of pediocin in an aqueous medium monitored by fourier transform infrared spectroscopy: a biological implication
Authors:Gaussier Hélène  Lavoie Marc  Subirade Muriel
Institution:Chaire de recherche du Canada sur les protéine et les ailments fonctionnels, Université Laval, département des aliments et de nutrition, Pavillon Paul Comtois, Sainte-Foy, Québec, G1K 7P4, Canada.
Abstract:Fourier transform infrared (FTIR) spectroscopy was used to investigate the secondary structure of pediocin PA-1 in different aqueous media in relation to its antimicrobial activity. The experiments were performed at pD (pH meter corrected for deuterium isotope effect) 6, 7, and 8 and during a heating-cooling cycle of 20-80 degrees C. At pD 6, (i.e. pediocin's most active form), the FTIR results show that pediocin adopts an unordered structure with a small contribution of beta-turn. After a heating-cooling cycle, thermally-induced changes in pediocin are reversed and its activity is maintained. Increasing the pD to 7 and 8 leads to a more ordered secondary structure. For these two pD values, an increase in temperature induces an irreversible aggregation of protein as revealed by the amide I' band. The analysis of the Tyr region provides more insight into the aggregation process. In fact, it appears to be a two-step process, involving first the C (carboxy)-terminus of pediocin and then the N (amino)-terminus. This study reveals two major points: (1) the preservation of pediocin flexibility is essential for maintaining its activity; and (2) the aggregation of its C-terminus is sufficient to induce a loss of activity, suggesting that this region plays an important role in the activity of pediocin.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号