首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ontogeny of low molecular weight stress protein p26 during early development of the brine shrimp, Artemia franciscana
Authors:Susan A Jackson  James S Clegg
Institution:University of California, Davis, Bodega Marine Laboratory, P.O. Box 247, Bodega Bay, CA 94923, USA.
Abstract:Embryogenesis in the brine shrimp, Artemia sp., occurs by one of two pathways: (i) the direct, uninterrupted development of nauplius larvae within the female or (ii) the production of embryos that arrest development at the gastrula stage and enter diapause. Diapause embryos are released from females into the aqueous environment where they remain in diapause until activated by appropriate environmental cues and resume development. These encysted embryos possess at least one low molecular weight stress protein, which we refer to as p26 and which has been implicated previously in the stress response of activated embryos. We investigated the appearance of p26 in developing diapause embryos in utero and looked for its presence in embryos developing directly into nauplii. We found p26 to be specific to diapause-destined embryos; it was not detected in direct-developing embryos. We conclude that p26 is not required for the basic developmental program that produces the nauplius. In diapause-destined embryos, p26 was first detectable after 3 days of development, at which time the embryos were late gastrulae. This protein continues to increase in amount until the encysted embryos are released, approximately 5 days after fertilization. At the time of release almost all p26 is located in the low speed supernatant fraction, but as released embryos continue diapause, p26 transfers to the pelleted nuclear fraction in increasing amounts. Our working hypothesis views p26 as a molecular chaperone preventing protein denaturation and aggregation under conditions associated with metabolic arrest and other stressful states, which these encysted embryos encounter.
Keywords:Artemia franciscana            brine shrimp  development  diapause  stress protein
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号