首页 | 本学科首页   官方微博 | 高级检索  
     


Charge sequence coding in statistical modeling of unfolded proteins
Authors:Petras J. Kundrotas  Andrey Karshikoff
Affiliation:Department of Biosciences at Novum, Karolinska Institutet, SE-141 57 Huddinge, Sweden
Abstract:Unfolded proteins recently attracted attention due to accumulation of experimental evidences for their significant role in different life processes. Modeling of electrostatic interactions (EI) in unfolded state of proteins is becoming increasingly important as well. In this paper, we stress on the importance of how the sequence of charged residues of a given protein is incorporated into the models for calculation of EI in the unfolded state. On the basis of the distributions of distances between titratable sites of charged residues calculated for polypeptide chains of various compositions, it was found that the distance distribution for a pair of residues, located close to each other along the sequence of a protein, depends on what residues constitute the pair in question. It was concluded that the consideration of these residue-specific distributions is essential for a statistical model to be accurate from the physical point of view. It was suggested that use of distance intervals in the spherical model of unfolded proteins accounts better for the charge sequence than the set of single distance values. This was illustrated by comparison of the pK values of the titratable groups of the unfolded N-terminal SH3 domain of the Drosophila protein drk to the available experimental data.
Keywords:Charge sequence  Statistical  Unfolded protein
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号