首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional diversity of heat-labile toxins (LT) produced by enterotoxigenic Escherichia coli: differential enzymatic and immunological activities of LT1 (hLT) AND LT4 (pLT)
Authors:Rodrigues Juliana F  Mathias-Santos Camila  Sbrogio-Almeida Maria Elisabete  Amorim Jaime H  Cabrera-Crespo Joaquim  Balan Andrea  Ferreira Luís C S
Institution:From the Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000.;the §Division of Technological Development, Butantan Institute, São Paulo, SP 05503-900, and ;the National Laboratory of Biosciences, Research Centre of Energy and Material, São Paulo, SP 13084-971, Brazil
Abstract:Heat-labile toxins (LTs) have ADP-ribosylation activity and induce the secretory diarrhea caused by enterotoxigenic Escherichia coli (ETEC) strains in different mammalian hosts. LTs also act as adjuvants following delivery via mucosal, parenteral, or transcutaneous routes. Previously we have shown that LT produced by human-derived ETEC strains encompass a group of 16 polymorphic variants, including the reference toxin (LT1 or hLT) produced by the H10407 strain and one variant that is found mainly among bacterial strains isolated from pigs (LT4 or pLT). Herein, we show that LT4 (with six polymorphic sites in the A (K4R, K213E, and N238D) and B (S4T, A46E, and E102K) subunits) displays differential in vitro toxicity and in vivo adjuvant activities compared with LT1. One in vitro generated LT mutant (LTK4R), in which the lysine at position 4 of the A subunit was replaced by arginine, showed most of the LT4 features with an ~10-fold reduction of the cytotonic effects, ADP-ribosylation activity, and accumulation of intracellular cAMP in Y1 cells. Molecular dynamic studies of the A subunit showed that the K4R replacement reduces the N-terminal region flexibility and decreases the catalytic site crevice. Noticeably, LT4 showed a stronger Th1-biased adjuvant activity with regard to LT1, particularly concerning activation of cytotoxic CD8(+) T lymphocytes when delivered via the intranasal route. Our results further emphasize the relevance of LT polymorphism among human-derived ETEC strains that may impact both the pathogenicity of the bacterial strain and the use of these toxins as potential vaccine adjuvants.
Keywords:ADP-ribosylation  Bacterial Genetics  Bacterial Toxins  Cellular Immune Response  Protein Structure
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号