首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of calmodulin inhibition in the mode of action of ophiobolin a
Authors:Leung P C  Taylor W A  Wang J H  Tipton C L
Institution:Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011.
Abstract:Calmodulin has been isolated from the root of Zea mays. It activates the bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase and has electrophoretic mobility very similar to that of bovine brain calmodulin. Ophiobolin A, a fungal toxin, interacts with the maize calmodulin. The interaction is not reversed by dilution or denaturation in SDS and results in the loss of ability of the calmodulin to activate the phosphodiesterase. The inhibition is much faster in the presence than in the absence of Ca2+. The electrophoretic mobility of ophiobolin A-treated calmodulin is less than that of untreated calmodulin. Several similarities are found between the inhibition of maize calmodulin by ophiobolin A in vitro and the effects of ophiobolin A on excised roots. Both are irreversible and time-dependent. The concentration of ophiobolin A for half-maximal inhibition of calmodulin in the phosphodiesterase assay is similar to that for phytotoxicity. In both cases ophiobolin A derivatives behave similarly, i.e. 18-bromo-19-methoxyophiobolin A is as potent as ophiobolin A, while 3-anhydro-ophiobolin A and 6-epi-ophiobolin A are less potent. A smaller amount of active calmodulin was measured in the extract from ophiobolin A-treated roots than in those from untreated roots. The present study suggests that calmodulin is a target molecule in the root for the toxicity of ophiobolin A.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号