首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The binding of spermine to polynucleotides and complementary oligonucleotides at near physiological ionic strength
Authors:B Marczynski
Institution:1. Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA;2. Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA;3. University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA;4. Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA;1. Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-Sen University, Guangzhou 510275, China;2. Department of Endocrinology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China;1. Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran;2. Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
Abstract:The binding of 14C] spermine to polynucleotides has been studied by equilibrium dialysis and the data analysed by Scatchard plots. The binding of spermine to poly(A) shows a binding site for 1 spermine/140 nucleotides when measured in 0.2M NaCl at 5 degrees C. Poly(C) also has a similar sites; on the other hand poly(U) and poly(G) each have a binding site for 1 spermine/12 nucleotides. The addition of complementary di- or trinucleotides to either poly(A) or poly(U) affects their ability to bind spermine, in particular the high affinity site on poly(A) is no longer detectable. The effect of spermine, spermidine and putrescine on the binding of polynucleotides to complementary di- and trinucleotides was also studied. Spermine markedly increased the binding of both ApA and of ApApA to poly(U) whereas spermidine and putrescine had very little effect. In contrast spermine had little effect on the binding of either UpU or UpUpU to poly(A). These results suggest that spermine binding to oligo- and polynucleotides is dependent on the particular nucleotide combination involved and that spermine may therefore be able to act selectively within cells.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号