首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of the mcrBC region of Escherichia coli K-12 wild-type and mutant strains.
Authors:T Krüger  C Grund  C Wild  M Noyer-Weidner
Affiliation:Max-Planck-Institut für molekulare Genetik, Berlin, Germany.
Abstract:We have carried out an analysis of the Escherichia coli K-12 mcrBC locus in order to (1) elucidate its genetic organization, (2) to identify the proteins encoded by this region, and (3) to characterize their involvement in the restriction of DNA containing methylated cytosine residues. In vitro expression of recombinant plasmids carrying all or portions of the mcrBC region revealed that the mcrB and mcrC genes are organized as an operon. The mcrBC operon specifies five proteins, as evident from parallel in vitro and in in vivo expression studies. Three proteins of 53, 35 and 34 kDa originate from mcrB expression, while two proteins of 37 and 16 kDa arise from mcrC expression. Products of both the mcrB and mcrC genes are required to restrict the methylated substrate DNA used in this study. We also determined the nature of mutant mcrBC loci in comparison to the E. coli K-12 wild-type mcrBC locus. A major goal of these studies was to clarify the nature of the mcrB-1 mutation, which is carried by some strains employed in previous analyses of the E. coli K-12 McrBC system. Based on our analyses the mutant strains investigated could be divided into different complementation groups. The mcrB-1 mutation is a nonsense or frameshift mutation located within mcrB. It causes premature termination of mcrB gene product synthesis and reduces the level of mcrC gene expression. This finding helps to understand an existing conflict in the literature. We also describe temperature-sensitive McrA activity in some of the strains analysed and its relationship to the previously defined differences in the tolerance levels of E. coli K-12 mcrBC mutants to cytosine methylation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号