A Mathematical Model for MicroRNA in Lung Cancer |
| |
Authors: | Hye-Won Kang Melissa Crawford Muller Fabbri Gerard Nuovo Michela Garofalo S. Patrick Nana-Sinkam Avner Friedman |
| |
Affiliation: | 1. Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio, United States of America.; 2. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, United States of America.; 3. Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, Ohio, United States of America.; 4. Department of Mathematics, Ohio State University, Columbus, Ohio, United States of America.; University of Edinburgh, United Kingdom, |
| |
Abstract: | Lung cancer is the leading cause of cancer-related deaths worldwide. Lack of early detection and limited options for targeted therapies are both contributing factors to the dismal statistics observed in lung cancer. Thus, advances in both of these areas are likely to lead to improved outcomes. MicroRNAs (miRs or miRNAs) represent a class of non-coding RNAs that have the capacity for gene regulation and may serve as both diagnostic and prognostic biomarkers in lung cancer. Abnormal expression patterns for several miRNAs have been identified in lung cancers. Specifically, let-7 and miR-9 are deregulated in both lung cancers and other solid malignancies. In this paper, we construct a mathematical model that integrates let-7 and miR-9 expression into a signaling pathway to generate an in silico model for the process of epithelial mesenchymal transition (EMT). Simulations of the model demonstrate that EGFR and Ras mutations in non-small cell lung cancers (NSCLC), which lead to the process of EMT, result in miR-9 upregulation and let-7 suppression, and this process is somewhat robust against random input into miR-9 and more strongly robust against random input into let-7. We elected to validate our model in vitro by testing the effects of EGFR inhibition on downstream MYC, miR-9 and let-7a expression. Interestingly, in an EGFR mutated lung cancer cell line, treatment with an EGFR inhibitor (Gefitinib) resulted in a concentration specific reduction in c-MYC and miR-9 expression while not changing let-7a expression. Our mathematical model explains the signaling link among EGFR, MYC, and miR-9, but not let-7. However, very little is presently known about factors that regulate let-7. It is quite possible that when such regulating factors become known and integrated into our model, they will further support our mathematical model. |
| |
Keywords: | |
|
|