首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Putting the Pieces Together: High-performance LC-MS/MS Provides Network-, Pathway-, and Protein-level Perspectives in Populus
Authors:Paul Abraham  Richard J Giannone  Rachel M Adams  Udaya Kalluri  Gerald A Tuskan  Robert L Hettich
Institution:From the ‡Graduate School of Genome Science and Technology, University of Tennessee, Knoxville Tennessee 37830; ;§Chemical Sciences Division at Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; ;¶Biosciences Division, at Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831.
Abstract:High-performance mass spectrometry (MS)-based proteomics enabled the construction of a detailed proteome atlas for Populus, a woody perennial plant model organism. Optimization of experimental procedures and implementation of current state-of-the-art instrumentation afforded the most detailed look into the predicted proteome space of Populus, offering varying proteome perspectives: (1) network-wide, (2) pathway-specific, and (3) protein-level viewpoints. Together, enhanced protein retrieval through a detergent-based lysis approach and maximized peptide sampling via the dual-pressure linear ion trap mass spectrometer (LTQ Velos), have resulted in the identification of 63,056 tryptic peptides. The technological advancements, specifically spectral-acquisition and sequencing speed, afforded the deepest look into the Populus proteome, with peptide abundances spanning 6 orders of magnitude and mapping to ∼25% of the predicted proteome space. In total, tryptic peptides mapped to 11,689 protein assignments across four organ-types: mature (fully expanded, leaf plastichronic index (LPI) 10–12) leaf, young (juvenile, LPI 4–6) leaf, root, and stem. To resolve protein ambiguity, identified proteins were grouped by sequence similarity (≥ 90%), thereby reducing the protein assignments into 7538 protein groups. In addition, this large-scale data set features the first systems-wide survey of protein expression across different Populus organs. As a demonstration of the precision and comprehensiveness of the semiquantitative analysis, we were able to contrast two stages of leaf development, mature versus young leaf. Statistical comparison through ANOVA analysis revealed 1432 protein groups that exhibited statistically significant (p ≤ 0.01) differences in protein abundance. Experimental validation of the metabolic circuitry expected in mature leaf (characterized by photosynthesis and carbon fixation) compared with young leaf (characterized by rapid growth and moderate photosynthetic activities) strongly testifies to the credibility of the approach. Instead of quantitatively comparing a few proteins, a systems view of all the changes associated with a given cellular perturbation could be made.Mass spectrometry (MS)-based proteomics has experienced tremendous growth in recent years, leading to the establishment of numerous protocols, platforms, and workflows for the characterization of protein expression at the genome level (1). Although these advancements have facilitated comprehensive proteomic investigations of simple bacterial isolates and microbial communities, the application of MS-based proteomics for plants and other higher eukaryotes remains underdeveloped. Recently, large-scale proteomic studies have been directed at characterization of Populus, a woody perennial model organism. With the recent release and subsequent curation of the P. trichocarpa genome (2), these large-scale MS-based proteomic investigations offer the potential to introduce new biological insights into woody perennial plant biology (3, 4, 5). For example, we have recently demonstrated the ability to measure ∼17% of the Populus proteome by coupling multidimensional liquid chromatography (MudPIT)1 with nano-electrospray tandem mass spectrometry (2D-LC-MS/MS) (6). Relative to the two-dimensional gel-based approaches (7), MudPIT provides enhanced separation and when used in conjunction with MS/MS, surpasses the throughput and number of identifiable proteins detected in complex mixtures (8). Although we have demonstrated the general effectiveness of this approach, the identification and quantitation of the proteins expressed in a plant cell or tissue are still notoriously complicated by a number of factors, including the size and complexity of plant genomes, abundance of protein variants, as well as the dynamic range of protein identification. To overcome these challenges, improvements are needed in sample preparation, MS instrumentation, and data interpretation.The architecture of plant cell walls provides resistance to chemical and biological degradation, thus requiring mechanical and detergent-based lysis for optimal proteome analysis. However, this criterion presents a major challenge for plant proteomic research using electrospray mass spectrometry, as detergent-containing solutions can impede enzymatic digestion and cause significant analyte suppression (9). Therefore, most plant proteomic studies using the “MudPIT” strategy apply mechanical disruption in conjunction with a detergent-free preparation method (10). Typically, strong chaotropic agents such as urea and guanidine hydrochloride are used for the extraction, denaturation, and digestion of proteins. In a recent study, Mann et al. (2009) introduced a filter-aided sample preparation (FASP) method that uses and effectively removes sodium dodecyl sulfate (SDS) before enzymatic digestion and electrospray analysis (11). This study demonstrated enhanced retrieval of peptides from biological materials, yielding a more accurate representation of the proteome. We developed a similar experimental approach for extraction of proteins from plant tissue to obtain a more comprehensive, unbiased proteome characterization well beyond that achievable with currently available methods. Similar to the FASP method, we demonstrate the power of SDS for proteomic sample preparation, not only in its ability to more-thoroughly lyse cells, but also its ability to better solubilize both hydrophilic and hydrophobic proteins. This powerful attribute gives proteolytic enzymes maximum opportunity to generate peptides specific to their cleavage potential so that at least a few representative peptides can be obtained for proteins that would have otherwise been discarded or lost because of insolubility, e.g. membrane-bound proteins. Rather than performing a buffer exchange with urea, depletion of SDS is achieved by precipitating proteins out of solution using trichloroacetic acid.Characterization of protein expression in plants is further complicated by the heterogeneous mixture of various cell types, each with a unique proteome signature and individualized response to environmental chemical or physical signals. This inherent complexity of plant proteomes and the large dynamic range in protein abundance overwhelms current analytical platforms (12). Moreover, biochemical regulatory networks in plants are more elaborate and dynamic than in microbial species; consequently, many biological components are left undiscovered, including modified peptides and low-abundance proteins (13, 14, 15). Recent developments in ion-trap MS instrumentation, namely the dual-pressure linear ion trap mass spectrometer (LTQ Velos), have demonstrated improved ability to comprehensively characterize complex proteomics samples (16). Featuring a newly designed ion source and a two-chamber ion trap mass analyzer, the LTQ Velos achieves greater dynamic range, sensitivity, and speed of spectral acquisition when applied to complex proteomic samples. Cumulatively, the technological advancements afford substantial increases in the detection and identification of both proteins and unique peptides when compared with existing state-of-the-art technologies. Therefore, to satisfy the need for depth of proteome characterization in plants, we apply the newly developed LTQ Velos for mass spectrometry measurements of the Populus proteome.For most terrestrial plants, life begins and ends in the same physical location. For woody perennial plants, this sedentary lifestyle may last thousands of years. One consequence of this lifestyle is that each plant typically experiences dramatic changes in its ambient environment throughout its lifetime and, at any given time, equilibrium between endogenous growth processes and exogenous constraints exerted by the environment must be tightly controlled. To survive under varying environmental conditions, temporal plastic responses evoke patterns of protein expression that progressively influence morphological, anatomical, and functional traits of three principal organs—leaf, root, and stem. Collectively and individually, these organs operate to perceive and respond to periodic and chronic environment conditions. Currently, a comprehensive understanding of the spatial variation in protein expression patterns across the organ types is lacking for woody perennial plants, in which most large-scale proteome analyses with Populus were performed on isolated organs, tissues, organelles, or subcellular structures. For this reason, we combined the state-of-the-art LTQ-Velos platform with the SDS/TCA sample preparation methodology to generate a high-coverage proteome atlas of the principal organ types from Populus.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号