首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Protein N-terminal Acetyltransferases Act as N-terminal Propionyltransferases In Vitro and In Vivo
Authors:H?vard Foyn  Petra Van Damme  Svein I St?ve  Nina Glomnes  Rune Evjenth  Kris Gevaert  Thomas Arnesen
Institution:From the ‡Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; ;§Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway; ;¶Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; ;‖Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; and ;**The Department of Surgical Sciences, University of Bergen, N-5020 Bergen, Norway
Abstract:N-terminal acetylation (Nt-acetylation) is a highly abundant protein modification in eukaryotes catalyzed by N-terminal acetyltransferases (NATs), which transfer an acetyl group from acetyl coenzyme A to the alpha amino group of a nascent polypeptide. Nt-acetylation has emerged as an important protein modifier, steering protein degradation, protein complex formation and protein localization. Very recently, it was reported that some human proteins could carry a propionyl group at their N-terminus. Here, we investigated the generality of N-terminal propionylation by analyzing its proteome-wide occurrence in yeast and we identified 10 unique in vivo Nt-propionylated N-termini. Furthermore, by performing differential N-terminome analysis of a control yeast strain (yNatA), a yeast NatA deletion strain (yNatAΔ) or a yeast NatA deletion strain expressing human NatA (hNatA), we were able to demonstrate that in vivo Nt-propionylation of several proteins, displaying a NatA type substrate specificity profile, depended on the presence of either yeast or human NatA. Furthermore, in vitro Nt-propionylation assays using synthetic peptides, propionyl coenzyme A, and either purified human NATs or immunoprecipitated human NatA, clearly demonstrated that NATs are Nt-propionyltransferases (NPTs) per se. We here demonstrate for the first time that Nt-propionylation can occur in yeast and thus is an evolutionarily conserved process, and that the NATs are multifunctional enzymes acting as NPTs in vivo and in vitro, in addition to their main role as NATs, and their potential function as lysine acetyltransferases (KATs) and noncatalytic regulators.Modifications greatly increases a cell''s proteome diversity confined by the natural amino acids. As more than 80% of human proteins, more than 70% of plant and fly proteins and more than 60% of yeast proteins are N-terminally acetylated (Nt-acetylated),1 this modification represents one of the most common protein modifications in eukaryotes (15). Recent studies have pointed to distinct functional consequences of Nt-acetylation (6): creating degradation signals recognized by a ubiquitin ligase of a new branch of the N-end rule pathway (7), preventing translocation across the endoplasmic reticulum membrane (8), and mediating protein complex formation (9). Nt-acetylation further appears to be essential for life in higher eukaryotes; for instance, a mutation in the major human N-terminal acetyltransferase (NAT), hNatA, was recently shown to be the cause of Ogden syndrome by which male infants are underdeveloped and die at infancy (10). Unlike lysine acetylation, Nt-acetylation is considered an irreversible process, and further, to mainly occur on the ribosome during protein synthesis (1115). In yeast and humans, three NAT complexes are responsible for the majority of Nt-acetylation; NatA, NatB and NatC, each of which has a defined substrate specificity (16). NatA acetylates Ser-, Ala-, Gly-, Thr-, Val- and Cys- N-termini generated on removal of the initiator methionine (iMet) (1, 1719). NatB and NatC acetylate N-termini in which the iMet is followed by an acidic (2023) or a hydrophobic residue respectively (2426). Naa40p/NatD was shown to acetylate the Ser-starting N-termini of histones H2A and H4 (27, 28). NatE, composed of the catalytic Naa50p (Nat5p) has substrate specificity toward iMet succeeded by a hydrophobic amino acid (29, 30). As largely the same Nt-acetylation patterns are found in yeast and humans, it was believed that the NAT-machineries were conserved in general (31). However, the recently discovered higher eukaryotic specific NAT, Naa60p/NatF, was found to display a partially distinct substrate specificity in part explaining the higher degree of Nt-acetylation in higher versus lower eukaryotes (4).Human NatA is composed of two main subunits: the catalytic subunit hNaa10p and the auxiliary subunit, hNaa15p that is presumably responsible for anchoring the complex to the ribosome (14, 19). The chaperone-like HYPK protein is also stably associated with the NatA subunits and may be essential for efficient NatA activity (32). In addition, hNaa50p was shown to be physically associated with hNatA, however it is believed not to affect NatA activity (14, 33, 34). hNaa50p was also shown to exhibit Nε-acetyltransferase (KAT) activity (29), however, the structure of hNaa50p with its peptide substrate bound strongly indicates that the peptide binding pocket is specifically suited to accommodate N-terminal peptides, as opposed to lysine residues (35). The human NatA subunits are associated with ribosomes, but interestingly, significant fractions are also nonribosomal (19, 30, 32). Of further notice, the catalytic subunits, hNaa10p and hNaa50p, were also found to partially act independently of the hNatA complex (30, 36).Recent studies have identified novel in vivo acyl modifications of proteins. Mass spectrometry data of affinity-enriched acetyllysine-containing peptides from HeLa cells showed the presence of propionylated and butyrylated lysines in histone H4 peptides (37). Similar analyses also showed the presence of propionylated lysines in p53, p300 and CREB-binding protein (38) besides the yeast histones H2B, H3 and H4 (39). Propionylated or butyrylated residues differ by only one or two extra methyl moieties as compared with their acetylated counterparts, thereby adding more hydrophobicity and bulkiness to the affected residue. To date, no distinct propionyl- or butyryltransferases responsible for these modifications have been identified. However, by using propionyl coenzyme A (Prop-CoA) or butyryl coenzyme A (But-CoA) as donors in the enzyme reaction, it was shown that some of the previously characterized lysine acetyltransferases (KATs) are able to respectively catalyze propionylation and butyrylation of lysine residues both in vitro (37, 4042) and in vivo (38, 41). Similarly, it has been shown that lysine deacetylases also are capable of catalyzing depropionylation (40, 41, 43, 44) and debutyrylation (44) (see review (45)).Interestingly, mass spectrometry data also suggested that propionylated N-termini are present in human cell lines (46, 47). Until today, an N-terminal propionyl transferase (NPT) catalyzing N-terminal propionylation (Nt-propionylation) has to our knowledge not been identified.In this study, we hypothesized that NATs might have the ability to act as NPTs. In vitro experiments using purified hNaa10p, hNaa50p or immunoprecipitated human NatA complex indeed confirmed their intrinsic capacity to catalyze Nt-propionylation toward synthetic peptides. NatA was also found capable of Nt-butyrylation in vitro. By means of N-terminomics, we further investigated the presence of yeast Nt-propionylated proteins in vivo. Indeed, we found evidence for Nt-propionylation being a naturally occurring modification in yeast. Interestingly, in a yeast strain lacking NatA, we observed a loss in Nt-propionylation and Nt-acetylation for several NatA substrates, as compared with a control yeast strain expressing endogenous NatA or a strain ectopically expressing hNatA. Thus, besides acting as NATs, yeast and human NatA can act as NPTs and we thus demonstrate for the first time that NATs have the capacity of both acetylating and propionylating protein N-termini in vivo and in vitro.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号