首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Protein Translocation across the Rough Endoplasmic Reticulum
Authors:Elisabet C Mandon  Steven F Trueman  Reid Gilmore
Institution:Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324
Abstract:The rough endoplasmic reticulum is a major site of protein biosynthesis in all eukaryotic cells, serving as the entry point for the secretory pathway and as the initial integration site for the majority of cellular integral membrane proteins. The core components of the protein translocation machinery have been identified, and high-resolution structures of the targeting components and the transport channel have been obtained. Research in this area is now focused on obtaining a better understanding of the molecular mechanism of protein translocation and membrane protein integration.Protein translocation across the rough endoplasmic reticulum (RER) is an ancient and evolutionarily conserved process that is analogous to protein export across the cytoplasmic membranes of eubacterial and archaebacterial cells both with respect to the mechanism and core components. The RER membrane of eukaryotic cells is contiguous with the nuclear envelope and is morphologically composed of interconnected cisternae and tubules. Electron microscope images of mammalian cells and tissues revealed that the cisternal regions of the cytoplasmic surface of the endoplasmic reticulum are densely studded by membrane-bound ribosomes (Palade 1955a,b), giving rise to the term “rough ER.” The RER-bound ribosomes in en face images are often arranged in spirals or hairpins (Palade 1955a; Christensen and Bourne 1999), indicative of polyribosomes that are actively engaged in protein translation.Consistent with this high density of membrane-bound ribosomes, the RER is a major site of protein biosynthesis in eukaryotic cells. The nuclear envelope, the Golgi, lysosome, peroxisome, plasma membrane, and endosomes are biosynthetically derived from the rough ER. The three major groups of proteins that are synthesized by RER-bound ribosomes include secretory proteins, integral membrane proteins destined for ER-derived membranes, and the lumenal-resident proteins of the ER, Golgi, nuclear envelope, and lysosome. For those membranes that are not physically linked to the ER (e.g., the lysosome), integral membrane and lumenal proteins are delivered to their destination by vesicular transport pathways. Bioinformatics analysis of fully sequenced eukaryotic genomes indicates that roughly 30% of open reading frames encode integral membrane proteins (Wallin and von Heijne 1998); hence, a major role of the RER is the biosynthesis of membrane proteins. An important class of membrane proteins that are integrated into the RER has single carboxy-terminal TM spans and are known as tail-anchored (TA) membrane proteins. The posttranslational integration pathway for TA proteins has been a subject of several recent reviews (Borgese and Fasana 2011; Shao and Hegde 2011), thus we will not address the TA pathway in this article.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号