首页 | 本学科首页   官方微博 | 高级检索  
     


A Critical Assessment of Feature Selection Methods for Biomarker Discovery in Clinical Proteomics
Authors:Christin Christin  Huub C. J. Hoefsloot  Age K. Smilde  B. Hoekman  Frank Suits  Rainer Bischoff  Peter Horvatovich
Affiliation:From ‡Analytical Biochemistry, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands; ;§Netherlands Bioinformatics Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; ;¶Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; ;‖IBM T. J. Watson Research Centre, Yorktown Heights, New York 10598
Abstract:In this paper, we compare the performance of six different feature selection methods for LC-MS-based proteomics and metabolomics biomarker discovery—t test, the Mann–Whitney–Wilcoxon test (mww test), nearest shrunken centroid (NSC), linear support vector machine–recursive features elimination (SVM-RFE), principal component discriminant analysis (PCDA), and partial least squares discriminant analysis (PLSDA)—using human urine and porcine cerebrospinal fluid samples that were spiked with a range of peptides at different concentration levels. The ideal feature selection method should select the complete list of discriminating features that are related to the spiked peptides without selecting unrelated features. Whereas many studies have to rely on classification error to judge the reliability of the selected biomarker candidates, we assessed the accuracy of selection directly from the list of spiked peptides. The feature selection methods were applied to data sets with different sample sizes and extents of sample class separation determined by the concentration level of spiked compounds. For each feature selection method and data set, the performance for selecting a set of features related to spiked compounds was assessed using the harmonic mean of the recall and the precision (f-score) and the geometric mean of the recall and the true negative rate (g-score). We conclude that the univariate t test and the mww test with multiple testing corrections are not applicable to data sets with small sample sizes (n = 6), but their performance improves markedly with increasing sample size up to a point (n > 12) at which they outperform the other methods. PCDA and PLSDA select small feature sets with high precision but miss many true positive features related to the spiked peptides. NSC strikes a reasonable compromise between recall and precision for all data sets independent of spiking level and number of samples. Linear SVM-RFE performs poorly for selecting features related to the spiked compounds, even though the classification error is relatively low.Biomarkers play an important role in advancing medical research through the early diagnosis of disease and prognosis of treatment interventions (1, 2). Biomarkers may be proteins, peptides, or metabolites, as well as mRNAs or other kinds of nucleic acids (e.g. microRNAs) whose levels change in relation to the stage of a given disease and which may be used to accurately assign the disease stage of a patient. The accurate selection of biomarker candidates is crucial, because it determines the outcome of further validation studies and the ultimate success of efforts to develop diagnostic and prognostic assays with high specificity and sensitivity. The success of biomarker discovery depends on several factors: consistent and reproducible phenotyping of the individuals from whom biological samples are obtained; the quality of the analytical methodology, which in turn determines the quality of the collected data; the accuracy of the computational methods used to extract quantitative and molecular identity information to define the biomarker candidates from raw analytical data; and finally the performance of the applied statistical methods in the selection of a limited list of compounds with the potential to discriminate between predefined classes of samples. De novo biomarker research consists of a biomarker discovery part and a biomarker validation part (3). Biomarker discovery uses analytical techniques that try to measure as many compounds as possible in a relatively low number of samples. The goal of subsequent data preprocessing and statistical analysis is to select a limited number of candidates, which are subsequently subjected to targeted analyses in large number of samples for validation.Advanced technology, such as high-performance liquid chromatography–mass spectrometry (LC-MS),1 is increasingly applied in biomarker discovery research. Such analyses detect tens of thousands of compounds, as well as background-related signals, in a single biological sample, generating enormous amounts of multivariate data. Data preprocessing workflows reduce data complexity considerably by trying to extract only the information related to compounds resulting in a quantitative feature matrix, in which rows and columns correspond to samples and extracted features, respectively, or vice versa. Features may also be related to data preprocessing artifacts, and the ratio of such erroneous features to compound-related features depends on the performance of the data preprocessing workflow (4). Preprocessed LC-MS data sets contain a large number of features relative to the sample size. These features are characterized by their m/z value and retention time, and in the ideal case they can be combined and linked to compound identities such as metabolites, peptides, and proteins. In LC-MS-based proteomics and metabolomics studies, sample analysis is so time consuming that it is practically impossible to increase the number of samples to a level that balances the number of features in a data set. Therefore, the success of biomarker discovery depends on powerful feature selection methods that can deal with a low sample size and a high number of features. Because of the unfavorable statistical situation and the risk of overfitting the data, it is ultimately pivotal to validate the selected biomarker candidates in a larger set of independent samples, preferably in a double-blinded fashion, using targeted analytical methods (1).Biomarker selection is often based on classification methods that are preceded by feature selection methods (filters) or which have built-in feature selection modules (wrappers and embedded methods) that can be used to select a list of compounds/peaks/features that provide the best classification performance for predefined sample groups (e.g. healthy versus diseased) (5). Classification methods are able to classify an unknown sample into a predefined sample class. Univariate feature selection methods such as filters (t test or Wilcoxon–Mann–Whitney tests) cannot be used for sample classification. Other classification methods such as the nearest shrunken centroid method have intrinsic feature selection ability, whereas other classification methods such as principal component discriminant analysis (PCDA) and partial least squares regression coupled with discriminant analysis (PLSDA) should be augmented with a feature selection method. There are classifiers having no feature selection option that perform the classification using all variables, such as support vector machines that use non-linear kernels (6). Classification methods without the ability to select features cannot be used for biomarker discovery, because these methods aim to classify samples into predefined classes but cannot identify the limited number of variables (features or compounds) that form the basis of the classification (6, 7). Different statistical methods with feature selection have been developed according to the complexity of the analyzed data, and these have been extensively reviewed (5, 6, 8, 9). Ways of optimizing such methods to improve sensitivity and specificity are a major topic in current biomarker discovery research and in the many “omics-related” research areas (6, 10, 11). Comparisons of classification methods with respect to their classification and learning performance have been initiated. Van der Walt et al. (12) focused on finding the most accurate classifiers for simulated data sets with sample sizes ranging from 20 to 100. Rubingh et al. (13) compared the influence of sample size in an LC-MS metabolomics data set on the performance of three different statistical validation tools: cross validation, jack-knifing model parameters, and a permutation test. That study concluded that for small sample sets, the outcome of these validation methods is influenced strongly by individual samples and therefore cannot be trusted, and the validation tool cannot be used to indicate problems due to sample size or the representativeness of sampling. This implies that reducing the dimensionality of the feature space is critical when approaching a classification problem in which the number of features exceeds the number of samples by a large margin. Dimensionality reduction retains a smaller set of features to bring the feature space in line with the sample size and thus allow the application of classification methods that perform with acceptable accuracy only when the sample size and the feature size are similar.In this study we compared different classification methods focusing on feature selection in two types of spiked LC-MS data sets that mimic the situation of a biomarker discovery study. Our results provide guidelines for researchers who will engage in biomarker discovery or other differential profiling “omics” studies with respect to sample size and selecting the most appropriate feature selection method for a given data set. We evaluated the following approaches: univariate t test and Mann–Whitney–Wilcoxon test (mww test) with multiple testing correction (14), nearest shrunken centroid (NSC) (15, 16), support vector machine–recursive features elimination (SVM-RFE) (17), PLSDA (18), and PCDA (19). PCDA and PLSDA were combined with the rank-product as a feature selection criterion (20). These methods were evaluated with data sets having three characteristics: different biological background, varying sample size, and varying within- and between-class variability of the added compounds. Data were acquired via LC-MS from human urine and porcine cerebrospinal fluid (CSF) samples that were spiked with a set of known peptides (true positives) at different concentration levels. These samples were then combined in two classes containing peptides spiked at low and high concentration levels. The performance of the classification methods with feature selection was measured based on their ability to select features that were related to the spiked peptides. Because true positives were known in our data set, we compared performance based on the f-score (the harmonic mean of precision and recall) and the g-score (the geometric mean of accuracy).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号