Abstract: | Over the past 10–15 years, nuclear magnetic resonance (NMR) spectroscopy has been employed to study metabolic events accompanying programmed cell death (apoptosis). The early studies were characterized by experiments focusing on specific metabolic parameters obtained by analyzing a limited number of biochemical compounds, e.g. selected metabolic species involved in the Krebs cycle, in energy metabolism, in phospholipid synthesis and degradation, or in mobile-lipid accumulation. However, during the past few years metabolic NMR spectroscopy has begun to refocus towards more comprehensive analyses of tissue metabolites detectable in NMR spectra. This review describes some requirements needed for the development of an integrated, metabolomic concept for NMR spectroscopy investigations of apoptotic cells, and presents recent studies approaching this goal. Metabolomic NMR spectroscopy allows one not only to distinguish between cells that are sensitive to apoptosis induction and resistant cells, but also, in conjunction with measurements of complementary biological parameters, to follow the temporal evolution of the apoptotic process and to analyze mechanisms of apoptosis resistance. |