首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biochemical Changes During Osmopriming of Leek Seeds
Authors:BRAY  C M; DAVISON  P A; ASHRAF  M; TAYLOR  R M
Institution:Department of Biochemistry and Molecular Biology, University of Manchester Oxford Road, Manchester Ml3 9PT, UK
Abstract:Osmotic priming treatments reduced both the mean time to germinationand the spread of germination for two leek seed-lots of highviability but differing vigour. In addition the differencesin germination performance between these two seed-lots was abolishedby the priming treatments. In the unprimed seed-lots, differencesin germination performance were reflected in differences inrates of protein biosynthesis in leek embryo tissue during germination.Osmopriming treatments abolished these differences upon subsequentgermination of osmotically primed seed and furthermore inducedhigh levels of protein biosynthesis in embryo tissue. DNA synthesiswas detectable in leek embryos during the priming period inthe absence of any cell division and was followed by a five-foldincrease in the rate of DNA synthesis in embryo tissue upongermination following priming at which time the rates of DNAsynthesis in these leek embryos was significantly greater thanthat found at any time over the first 4 d of germination inembryos of unprimed leek seeds. The increases in rates of bothprotein and DNA synthesis observed upon germination of primedseed occurred only after a 6–12 h lag period during whichtime there is little increase in these rates above those foundat the end of priming Analysis of nucleotide and nucleotide sugar levels in leek embryosboth during and after priming showed that only traces of GTPand CTP and low levels of ATP and UTP were present in embryosduring priming. After a 6 h lag period following the end ofpriming these levels increased sharply, probably via de novosynthesis. A similar pattern was found for UDP glucose levelsduring priming and subsequent germination. These results indicatethat there is considerable biochemical activity during primingand that the significant benefits in germination performanceof primed leek seeds is accompanied by marked increases in protein,DNA and nucleotide biosynthesis after a lag period of 6–12h following the end of the priming period Allium porrum, leek, seed, osmopriming, germination, protein synthesis, nucleic acids, nucleotides, nucleotide sugars
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号