首页 | 本学科首页   官方微博 | 高级检索  
     


beta -Arrestins regulate protease-activated receptor-1 desensitization but not internalization or Down-regulation.
Authors:May M Paing  Amy B Stutts  Trudy A Kohout  Robert J Lefkowitz  JoAnn Trejo
Affiliation:Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, North Carolina 27599-7365, USA.
Abstract:The widely expressed beta-arrestin isoforms 1 and 2 bind phosphorylated G protein-coupled receptors (GPCRs) and mediate desensitization and internalization. Phosphorylation of protease-activated receptor-1 (PAR1), a GPCR for thrombin, is important for desensitization and internalization, however, the role of beta-arrestins in signaling and trafficking of PAR1 remains unknown. To assess beta-arrestin function we examined signaling and trafficking of PAR1 in mouse embryonic fibroblasts (MEFs) derived from beta-arrestin (betaarr) knockouts. Desensitization of PAR1 signaling was markedly impaired in MEFs lacking both betaarr1 and betaarr2 isoforms compared with wild-type cells. Strikingly, in cells lacking only betaarr1 PAR1 desensitization was also significantly impaired compared with betaarr2-lacking or wild-type cells. In wild-type MEFs, activated PAR1 was internalized through a dynamin- and clathrin-dependent pathway and degraded. Surprisingly, in cells lacking both betaarr1 and betaarr2 activated PAR1 was similarly internalized through a dynamin- and clathrin-dependent pathway and degraded, whereas the beta(2)-adrenergic receptor (beta(2)-AR) failed to internalize. A PAR1 cytoplasmic tail mutant defective in agonist-induced phosphorylation failed to internalize in both wild-type and beta-arrestin knockout cells. Thus, PAR1 appears to utilize a distinct phosphorylation-dependent but beta-arrestin-independent pathway for internalization through clathrin-coated pits. Together, these findings strongly suggest that the individual beta-arrestin isoforms can differentially regulate GPCR desensitization and further reveal a novel mechanism by which GPCRs can internalize through a dynamin- and clathrin-dependent pathway that is independent of arrestins.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号