首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Electrostatic influence of PsaC protein binding to the PsaA/PsaB heterodimer in photosystem I
Authors:Ishikita Hiroshi  Stehlik Dietmar  Golbeck John H  Knapp Ernst-Walter
Institution:Institute of Chemistry and Biochemistry, Department of Biology, Free University of Berlin, D-14195 Berlin, Germany.
Abstract:The absence of the PsaC subunit in the photosystem I (PSI) complex (native PSI complex) by mutagenesis or chemical manipulation yields a PSI core (P700-F(X) core) that also lacks subunits PsaD and PsaE and the two iron-sulfur clusters F(A) and F(B), which constitute an integral part of PsaC. In this P700-F(X) core, the redox potentials (E(m)) of the two quinones A(1A/B) and the iron-sulfur cluster F(X) as well as the corresponding protonation patterns are investigated by evaluating the electrostatic energies from the solution of the linearized Poisson-Boltzmann equation. The B-side specific Asp-B558 changes its protonation state significantly upon isolating the P700-F(X) core, being mainly protonated in the native PSI complex but ionized in the P700-F(X) core. In the P700-F(X) core, E(m)(A(1A/B)) remains practically unchanged, whereas E(m)(F(X)) is upshifted by 42 mV. With these calculated E(m) values, the electron transfer rate from A(1) to F(X) in the P700-F(X) core is estimated to be slightly faster on the A(1A) side than that of the wild type, which is consistent with kinetic measurements.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号