A Sandwich‐Like Organolead Halide Perovskite Photocathode for Efficient and Durable Photoelectrochemical Hydrogen Evolution in Water |
| |
Authors: | Hefeng Zhang Zhou Yang Wei Yu Hong Wang Weiguang Ma Xu Zong Can Li |
| |
Affiliation: | 1. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian, China;2. University of Chinese Academy of Sciences, Beijing, China;3. School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, China |
| |
Abstract: | Organolead halide perovskite materials have demonstrated great potential in the solar cells field owing to their excellent optoelectronic properties. However, the instability issue of the perovskites impedes the translation of their attractive features for the solar fuel production such as photoelectrochemical H2 production from water splitting. Herein, CH3NH3PbI3 a photocathode with a sandwich‐like structure is fabricated with a general and scalable approach toward addressing this issue. The photocathode exhibits an onset potential at 0.95 V versus reversible hydrogen electrode (RHE) and a photocurrent density of ?18 mA cm?2 at 0 V versus RHE with an impressive ideal ratiometric power‐saved efficiency of 7.63%. More impressively, the photocathode retains good stability under 12 h continuous illumination in water at wide pH range. This performance is much superior to that of the best perovskite‐based photoelectrode ever reported. |
| |
Keywords: | hydrogen evolution perovskite photocathodes photoelectrochemical water splitting |
|
|