首页 | 本学科首页   官方微博 | 高级检索  
   检索      


High Power Magnetic Field Energy Harvesting through Amplified Magneto‐Mechanical Vibration
Authors:Min Gyu Kang  Rammohan Sriramdas  Hyeon Lee  Jinsung Chun  Deepam Maurya  Geon Tae Hwang  Jungho Ryu  Shashank Priya
Institution:1. Center for Energy Harvesting Materials and System (CEHMS), Virginia Tech, Blacksburg, VA, USA;2. Functional Ceramics Group, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, South Korea;3. School of Materials Science and Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
Abstract:Internet of Things (IoT) is driving the development of new generation of sensors, communication components, and power sources. Ideally, IoT sensors and communication components are expected to be powered by sustainable energy source freely available in the environment. Here, a breakthrough in this direction is provided by demonstrating high output power energy harvesting from very low amplitude stray magnetic fields, which exist everywhere, through magnetoelectric (ME) coupled magneto‐mechano‐electric (MME) energy conversion. ME coupled MME harvester comprised of multiple layers of amorphous magnetostrictive material, piezoelectric macrofiber composite, and magnetic tip mass, interacts with an external magnetic field to generate electrical energy. Comprehensive experimental investigation and a theoretical model reveal that both the magnetic torque generated through magnetic loading and amplification of magneto‐mechanical vibration by ME coupling contributes toward the generation of high electrical power from the stray magnetic field around power cables of common home appliances. The generated electrical power from the harvester is sufficient for operating microsensors (gyro, temperature, and humidity sensing) and wireless data transmission systems. These results will facilitate the deployment of IoT devices in emerging intelligent infrastructures.
Keywords:energy harvesting  magnetic fields  magnetoelectric  magneto‐mechano‐electric  magnetostriction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号