首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional binding of hexanucleotides to 3C protease of hepatitis A virus
Authors:Blaum Bärbel S  Wünsche Winfried  Benie Andrew J  Kusov Yuri  Peters Hannelore  Gauss-Müller Verena  Peters Thomas  Sczakiel Georg
Institution:Institute of Chemistry, University of Luebeck, Center for Structural and Cell Biology in Medicine, Ratzeburger Allee 160, D-23538 Luebeck, Germany.
Abstract:Oligonucleotides as short as 6 nt in length have been shown to bind specifically and tightly to proteins and affect their biological function. Yet, sparse structural data are available for corresponding complexes. Employing a recently developed hexanucleotide array, we identified hexadeoxyribonucleotides that bind specifically to the 3C protease of hepatitis A virus (HAV 3Cpro). Inhibition assays in vitro identified the hexanucleotide 5′-GGGGGT-3′ (G5T) as a 3Cpro protease inhibitor. Using 1H NMR spectroscopy, G5T was found to form a G-quadruplex, which might be considered as a minimal aptamer. With the help of 1H, 15N-HSQC experiments the binding site for G5T was located to the C-terminal β-barrel of HAV 3Cpro. Importantly, the highly conserved KFRDI motif, which has previously been identified as putative viral RNA binding site, is not part of the G5T-binding site, nor does G5T interfere with the binding of viral RNA. Our findings demonstrate that sequence-specific nucleic acid–protein interactions occur with oligonucleotides as small as hexanucleotides and suggest that these compounds may be of pharmaceutical relevance.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号