首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of a critical chaperoning region on an archaeal recombinant thermosome
Authors:Bergeron Lisa M  Lee Cecilia  Clark Douglas S
Institution:Department of Chemical Engineering, University of California, 201 Gilman Hall, Berkeley, CA 94720, USA
Abstract:Chaperone function in water-miscible organic co-solvents is useful for biocatalytic applications requiring enzyme stability in semi-aqueous media and for understanding chaperone behavior in hydrophobic environments. Previously, we have shown that a recombinant single subunit thermosome (rTHS) from Methanocaldococcus jannaschii functions in multiple co-solvents to hydrolyze ATP, prevent protein aggregation, and refold enzymes following solvent denaturation. For the present study, a truncated analog to the thermosome in which 70 N-terminal amino acids are removed is used to identify important regions within the thermosome for its chaperoning functions in organic co-solvents. Data presented herein indicate that the N-terminal region of rTHS is essential for the chaperone to restore the native state of the enzyme citrate synthase, but it is not a critical region for either binding of unfolded proteins or ATP hydrolysis. This is the first demonstration that direct refolding by a Group II chaperonin requires the N-terminal region of the protein.
Keywords:Chaperonin  Thermophile  Protein folding  Organic solvent  Structure-function relationship
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号