首页 | 本学科首页   官方微博 | 高级检索  
     


Genetic diversity and technological properties of Streptococcus thermophilus strains isolated from dairy products
Authors:Mora D  Fortina M G  Parini C  Ricci G  Gatti M  Giraffa G  Manachini P L
Affiliation:Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, sezione Microbiologia Industriale, Università degli Studi di Milano, Milano and Istituto Sperimentale Lattiero Caseario, Lodi, Italy. diego.mora@unimi.it
Abstract:AIMS: To evaluate the genetic diversity and the technological properties of 44 strains of Streptococcus thermophilus isolated from dairy products. Methods METHODS AND RESULTS: Strains were analysed for some relevant technological properties, i.e. exopolysaccharide (EPS) production, growth kinetic in skim milk medium, urease activity and galactose fermentation. The EPS production, determined by evaluating the colour of the colonies grown in ruthenium red milk agar, was observed in 50% of the analysed strains. Urease activity, determined by colorimetric and conductimetric methods, showed that 91% of the isolates, all except four, could hydrolyse urea. A conductimetric approach was also used for the evaluation of the overall metabolic behaviour in milk of Strep. thermophilus strains and the differences observed allowed grouping of the strains in seven different clusters. A total of 11 strains were able to produce acid in presence of galactose. Genetic diversity of Streptococcus thermophilus strains, evaluated by Random Amplified Polymorphic DNA fingerprinting (RAPD) and amplified epsC-D restriction analysis, allowed the identification of 21 different genotypes. CONCLUSIONS: Comparison between the genotypic and phenotypic data highlights an interesting correlation between some important technological properties and well-defined genotypes. SIGNIFICANCE AND IMPACT OF THE STUDY: The genetic and technological characterization carried out on several Strep. thermophilus strains of dairy origin should expand the knowledge on this important lactic acid bacteria species and lead to a simple, rapid, and reliable identification of strains on the basis of well-defined biotechnological properties.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号