首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular insights into eukaryotic chemotaxis.
Authors:M J Caterina  P N Devreotes
Affiliation:Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205.
Abstract:Many cells display directed migration toward specific compounds. The best-studied eukaryotic models of chemotaxis are polymorphonuclear leukocytes, which respond to formylated peptides and Dictyostelium amoebas, which respond to extracellular cAMP. In both cell types, chemoattractants bind to surface receptors that contain seven transmembrane domains and interact with G proteins. Some cells, such as fibroblasts, undergo chemotaxis toward compounds whose receptors lack this motif and transmit their signals by other mechanisms. The cytosolic changes elicited by chemoattractants include increased levels of cAMP, cGMP, inositol phosphates, and calcium. These changes are correlated with actin polymerization and other cytoskeletal events that result in preferential extension of pseudopods toward the chemoattractant. Dictyostelium cell lines in which specific genes have been disrupted have demonstrated the necessity of a cAMP receptor (cAR1) and a G protein alpha-subunit (G alpha 2) for responsiveness to cAMP. Other proteins, such as myosin heavy chain and several actin binding proteins, are dispensible although their absence does affect the details of chemotaxis. The disruption of other relevant genes and the genetic reconstitution of chemotaxis in cells lacking crucial proteins should reveal many clues about this complicated and fascinating process.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号