首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Different responses to drought and freeze stress of Quercus ilex L. growing along a latitudinal gradient
Authors:Nardini  A  Salleo  S  Lo Gullo  MA  Pitt  F
Institution:(1) Dipartimento di Biologia, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy;(2) Istituto di Botanica, Università di Messina, C.P. 58, 98166 Messina S. Agata, Italy
Abstract:The vulnerability to drought and freeze stress was measured in young plants of Quercus ilex L. growing in the field in two natural sites within the Italian distribution area of this species, i.e. Sicily (Southern Mediterranean Basin) and Venezia Giulia (Northeastern Italy), respectively. In particular, the resistance strategies adopted by Q. ilex to withstand the two stresses were estimated in terms of seasonal and/or diurnal changes in leaf conductance to water vapour (gL), water potential (PSgrL) and relative water content (RWC) as well as of xylem embolism in the stem and root hydraulic conductance (KRL). Sicilian (SI) plants showed to reduce water loss by stomatal closure (gL decreased) in summer, thus maintaining average RWCs at 88–90%. Moreover, SI plants showed considerable resistance to xylem cavitation in the stem (the loss of hydraulic conductance, PLC, was less than 12% throughout the year) and to maintain the hydraulic conductance of their roots (KRL), constantly high even in summer. Plants growing in Venezia Giulia (VG plants), on the contrary, underwent leaf dehydration in the winter due to freeze stress so that RWC measured in April was still 78% on a diurnal basis. This was apparently due to consistent xylem embolism in the stem. In fact, PLC was as high as 40% between November and March. Only in the summer was PLC similar to that recorded in SI plants. Moreover, KRL of VG plants decreased in November from about 1.5 to 0.8×10–4 kg s–1 m–2 MPa–1, i.e. about 50%, and in February KRL dropped further to 0.4×10–4 kg s–1 m–2 MPa–1. On the basis of the above, we conclude that: (a) Q. ilex was more sensitive to freeze than to drought stress so that freeze stress can be considered as a factor limiting the distribution area of this species; (b) drought and freeze stress were faced by Q. ilex adopting two different resistance strategies, i.e. drought avoidance based on water saving in Sicily and freeze tolerance in Venezia Giulia.
Keywords:Resistance strategies  Root hydraulic conductance  Sicily  Venezia Giulia  Water relations parameters  Xylem embolism
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号