Abstract: | The N15 bacteriophage, when in the lysogenic state, does not integrate into the chromosome; in fact, it exists as a linear plasmid with the covalently closed ends. Upon infection, the phage DNA circularizes via its cohesive ends, after which a specific enzyme, the N15 protelomerase, cuts the circular molecule thus generating a linear plasmid with the covalently closed telomeres. Protelomerase generates, as the replication of plasmid prophage proceeds, the hairpin telomeres in replicated molecules. We identified the promoter of the protelomerase gene and demonstrated that it could be repressed presumably due to its binding with 3 tosL sites overlapping the promoter. We also found the transformation efficiency of E. coli cells of linear DNA with hairpin telomeres to be approximately 100-fold lower versus the circular DNA of the same size. At the same time, presence of the N15 prophage or of the protelomerase-expressing vector enhances, in a strain being transformed, the efficiency of its transformation by linear DNA up to a level ensured in transformation by circular plasmids. We believe that protelomerase, while binding with the hairpin telomeres, protects the latter from degradation by cellular nucleases. |