首页 | 本学科首页   官方微博 | 高级检索  
     


Structural engineering of the HIV-1 protease molecule with a beta-turn mimic of fixed geometry.
Authors:M. Baca   P. F. Alewood     S. B. Kent
Affiliation:Scripps Research Institute, La Jolla, California 92037.
Abstract:An important goal in the de novo design of enzymes is the control of molecular geometry. To this end, an analog of the protease from human immunodeficiency virus 1 (HIV-1 protease) was prepared by total chemical synthesis, containing a constrained, nonpeptidic type II' beta-turn mimic of predetermined three-dimensional structure. The mimic beta-turn replaced residues Gly16,17 in each subunit of the homodimeric molecule. These residues constitute the central amino acids of two symmetry-related type I' beta-turns in the native, unliganded enzyme. The beta-turn mimic-containing enzyme analog was fully active, possessed the same substrate specificity as the Gly16,17-containing enzyme, and showed enhanced resistance to thermal inactivation. These results indicate that the precise geometry of the beta-turn at residues 15-18 in each subunit is not critical for activity, and that replacement of the native sequence with a rigid beta-turn mimic can lead to enhanced protein stability. Finally, the successful incorporation of a fixed element of secondary structure illustrates the potential of a "molecular kit set" approach to protein design and synthesis.
Keywords:β-turn mimic  chemical synthesis  HIV-1 protease  protein design  thermal stability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号