首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The identification of N-glycosylated residues of the human 5-HT3B receptor subunit: importance for cell membrane expression
Authors:Massoura Andrew N  Dover Terri J  Newman Amy S  Barnes Nicholas M
Institution:Neuropharmacology and Neurobiology Section, Clinical and Experimental Medicine, The Medical School, University of Birmingham, Birmingham, UK.
Abstract:The 5-hydroxytryptamine 3 (5-HT(3)) receptor is a pentameric ligand-gated ion channel with potential molecular isoforms arising from different subunit combinations and/or different post-translational modifications of the individual subunits. Since N-glycosylation of the 5-HT3A subunit impacts cell surface trafficking, the presence of N-glycosylation of the human (h) 5-HT3B subunit and the influence upon cell membrane expression was investigated. Following transient expression of the h5-HT3B subunit by human embryonic kidney cells (HEK293 cells) stably expressing the h5-HT3A subunit, the N-glycosylation inhibitor tunicamycin reduced the size of the predominant h5-HT3B-immunoreactive protein (~ 55 kDa reduced to ~ 40 kDa). Disruption of each consensus N-glycosylation sequences in the h5-HT3B subunit (N31S, N75S, N117S, N147S and N182S) resulted in a reduced molecular weight (by ~ 2-4 kDa) of each mutant when expressed by HEK293 cells stably expressing the h5-HT3A subunit. Immunocytochemical studies demonstrated that disruption of each of the N-glycosylation sequences (individually or combined) reduced the expression of the mutant h5-HT3B subunit protein in the cell membrane when co-expressed with the h5-HT3A subunit. The present study has identified utilised N-glycosylation sites of the h5-HT3B subunit and demonstrated that they promote subunit expression in the cell membrane; a prerequisite for 5-HT(3) receptor function.
Keywords:5‐hydroxytryptamine  ligand‐gated ion channel  post‐translational modification
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号