首页 | 本学科首页   官方微博 | 高级检索  
     


A Hierarchical Bayesian Model for Spatial Prediction of Multivariate Non‐Gaussian Random Fields
Authors:Pierrette Chagneau  Frédéric Mortier  Nicolas Picard  Jean‐Noël Bacro
Affiliation:1. CIRAD, UR Dynamique des forêts naturelles, 34?398 Montpellier, France;2. I3M, UMR CNRS 5149, Université de Montpellier 2, 34?095 Montpellier, France;3. CIRAD, UR Diversité génétique et amélioration des espèces forestières, 34?398 Montpellier, France;4. CIRAD, UR Dynamique des forêts naturelles, Libreville, Gabon
Abstract:Summary As most georeferenced data sets are multivariate and concern variables of different types, spatial mapping methods must be able to deal with such data. The main difficulties are the prediction of non‐Gaussian variables and the modeling of the dependence between processes. The aim of this article is to present a new hierarchical Bayesian approach that permits simultaneous modeling of dependent Gaussian, count, and ordinal spatial fields. This approach is based on spatial generalized linear mixed models. We use a moving average approach to model the spatial dependence between the processes. The method is first validated through a simulation study. We show that the multivariate model has better predictive abilities than the univariate one. Then the multivariate spatial hierarchical model is applied to a real data set collected in French Guiana to predict topsoil patterns.
Keywords:Count data  Moving average  Ordinal data  Soil  Spatial prediction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号