首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling and experimental validation of carbon dioxide evolution in alkalophilic cultures
Authors:Noorman H J  Luijkx G C  Luyben K C  Heijnen J J
Affiliation:Delft University of Technology, Department of Biochemical Engineering, Julianalaan 67, 2628 BC Delft, the Netherlands.
Abstract:The chemical reactions involving carbon dioxide in mineral culture media are considered. A mathematic model is set up, based on published data, which is valid at pH values below 9, and in which the nonideality of the solution is taken into account. The crucial parameter is the constant expressing the equilibrium between carbon dioxide and bicarbonate, K(1).The reactions were studied in three different aqueous solutions: water, mineral salt medium, and a suspension with nongrowing bacterial cells. For each situation, three methods were compared for the determination of the bicarbonate concentration in the solution: equilibrium state total carbon analysis, dynamic monitoring of the rate of acid or alkali addition, and dynamic measurement of the carbon dioxide gas phase mole fraction.In a batch-stirred tank reactor, the equilibrium constant K(1) agreed with the published value, and the three bicarbonate analysis methods give the same results. If the nonideality is not taken into account, the result significantly differed from the published value and is likely to be incorrect.A real alkalophilic process, using Acinetobacter calcoaceticus in a continuous stirred tank reactor at steady state, also gave results that are in accord with the literature. However, the results do not allow validation of the equation expressing the nonideality.The steady state in the batch system and in continuous culture can be well described with the mathematical model. However, in the transient state there are some unexplained differences between simulation and measurement.
Keywords:carbon dioxide  bicarbonate  alkalophilic cultures  nonideal solutions  continuous culture
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号