首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Bacterial phosphoenolpyruvate-dependent phosphotransferase system. Mechanism of the transmembrane sugar translocation and phosphorylation
Authors:O Misset  M Blaauw  P W Postma  G T Robillard
Abstract:The phosphoryl-group transfer from PHPr to glucose or alpha-methylglucose and from glucose 6-phosphate to these same sugars catalyzed by membrane-bound EIIBGlc of the bacterial phosphoenolpyruvate-dependent phosphotransferase system has been studied in vitro. Kinetic measurements revealed that both the phosphorylation reaction and the exchange reaction proceed according to a ping-pong mechanism in which a phosphorylated membrane-bound enzyme II acts as an obligatory intermediate. The occurrence of a phospho-IIBGlc/IIIGlc has been physically demonstrated by the production of a glucose 6-phosphate burst from membranes phosphorylated by phosphoenolpyruvate, HPr, and EI. The observation of similar second-order rate constants for the production of sugar phosphate starting with different phosphoryl-group donors confirms the catalytic relevance of the phosphoenzyme IIBGlc intermediate. The in vitro results, together with data published by other investigators, have led to a model describing sugar phosphorylation and transport in vivo.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号