首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetics of redox interaction between substituted quinones and ascorbate under aerobic conditions.
Authors:V A Roginsky  T K Barsukova  H B Stegmann
Institution:N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow. rogin@postman.ru
Abstract:One-electron reduction of quinones (Q) by ascorbate (AscH ); (1) AscH + Q --> Q*- + Asc*- + H+, followed by the oxidation of semiquinone (Q*-) by molecular oxygen; (2) Q*- + O2 --> Q + O2*-, results in the catalytic oxidation of ascorbate (with Q as a catalyst) and formation of active forms of oxygen. Along with enzymatic redox cycling of Q. this process may be related to Q cytotoxicity and underlie an antitumor activity of some Qs. In this work, the kinetics of oxygen consumption accompanied the interaction of ascorbate with 55 Qs including substituted 1,4- and 1,2-benzoquinones, naphthoquinones and other quinoid compounds were studied in 50 mM sodium phosphate buffer, pH 7.40, at 37 degrees C by using the Clark electrode technique. The capability of Q to catalyze ascorbate oxidation was characterized by the effective value of kEFF calculated from the initial rate of oxygen consumption (R(OX)) by the equation R(OX) = kEFFQ]AscH-] as well as by a temporary change in R(OX). The correlation of kEFF with one-electron reduction potential, E(Q/Q*-), showed a sigma-like plot, the same for different kinds of Qs. Only the Qs which reduction potential E(Q/Q*-) ranged from nearly -250 to + 50 mV displayed a pronounced catalytic activity, kEFF increased with shifting E(Q/Q*-) to positive values. The following linear correlation between kEFF (in M (-1) s(-1)) and E(Q/Q*-) (in mV) might be suggested for these Qs: lg(kEFF)= 3.91 + 0.0143E(Q/Q*-). In contrast, Qs with E(Q/Q*-) < - 250 mV and E(Q/Q*-) > + 50 mV showed no measurable catalytic activity. The Qs studied displayed a wide variety in the kinetic regularities of oxygen consumption. When E(Q/Q*-) was more negative than - 100 mV, Q displayed a simple ('standard') kinetic behavior--R(OX) was proportional to AscH-]Q] independently of concentration of individual reagents, AscH-] and Q]; R(OX) did not decrease with time if AscH-] was held constant: Q recycling was almost reversible. Meanwhile, Qs with E(Q/Q*-) > - 100 mV demonstrated a dramatic deviation from the 'standard' behavior that was manifested by the fast decrease in R(OX) with time and non-linear dependence of even starting values of R(OX) on Q] and AscH-]. These deviations were caused basically by the participation of Q*- in side reactions different from (2). The above findings were confirmed by kinetic computer simulations. Some biological implications of Q-AscH- interaction were discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号