首页 | 本学科首页   官方微博 | 高级检索  
     


Reagentless biosensors based on self-deposited redox polyelectrolyte-oxidoreductases architectures
Authors:Narváez A  Suárez G  Popescu I C  Katakis I  Domínguez E
Affiliation:Departamento de Química Analítica, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
Abstract:Reagentless fructose and alcohol biosensors have been produced with a versatile enzyme immobilisation technique which mimics natural interactions and flexibility of living systems. The electrode architecture is built up on electrostatic interactions by the sequential adsorption of redox polyelectrolytes and redox enzymes giving rise to the efficient transformation of substrate fluxes into electrocatalytic currents. All investigated multilayer structures were self-deposited on 3-mercapto-1-propanesulfonic acid monolayers self-assembled on gold electrodes. Fructose dehydrogenase, horseradish peroxidase (HRP) and the couple HRP-alcohol oxidase were electrochemically connected with a cationic poly[(vinylpyridine)Os(bpy)2Cl] redox polymer (RP) interface in a layer-by-layer self-deposited architecture. The dependence of the distance on the electrochemical response of this interface was also studied showing a clear decrease in the Faradaic current when the distance to the electrode surface was increased. The sensitivities obtained for each biosensor were 19.3, 58.1 and 10.6 mA M(-1) cm(-1) for fructose, H2O2 and methanol, respectively. The sensitivity values can be easily controlled by a rational deposition and manipulation of the charge in the catalytic layers. The electrostatic assembly of the electrochemical interface and the catalytic layers resulted in integrated biochemical systems in which mass transfer diffusion and heterogeneous catalytic and electron transfer steps are efficiently coupled and can be easily manipulated.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号