Abstract: | We have developed a new tool for studying the role of rho in actin stress fibre formation. Clostridium botulinum exoenzyme C3 which affects actin microfilament assembly by ADP-ribosylation of p21 rho was genetically fused in various ways to diphtheria toxin (DT). The resulting chimeric toxins were tested on Vero cells. Chimeras of C3 and both the A and B fragments of diphtheria toxin had reduced cell binding activities but were apparently able to penetrate into Vero cells by the same mechanism as DT. Upon exposure to low pH, DC3B, a fusion protein of C3 and DT B fragment, had a high affinity for the DT receptor, but was apparently not able to translocate to the cytosol upon acidification. In spite of this, addition of picomolar concentrations of DC3B to the growth medium caused disruption of the cell microfilament system associated with vinculin and blocked cell growth efficiently, indicating that the C3 part of DC3B reached the cytosol, albeit by a different mechanism than that of whole diphtheria toxin. The chimeric DC3B toxin was also applied to Vero cells infected by Listeria monocytogenes, a pathogenic bacterium that uses an unknown mechanism of actin polymerization to move rapidly in the cytosol. DC3B inhibited the bacterially induced microfilament assembly indicating that L. monocytogenes utilizes a cellular rho dependent mechanism in this process. |