首页 | 本学科首页   官方微博 | 高级检索  
   检索      


High-frequency vibration improve callus growth via antioxidant enzymes induction in <Emphasis Type="Italic">Hyoscyamus kurdicus</Emphasis>
Authors:Halimeh Hassanpour  Vahid Niknam  Bahareh Sadat Haddadi
Institution:1.Aerospace Research Institute,Ministry of Science Research and Technology,Tehran,Iran;2.School of Biology, Center of Excellence in Phylogeny of Living Organisms in Iran, College of Science,University of Tehran,Tehran,Iran
Abstract:Effect of high-frequency vibration on growth rate, membrane stability and activities of some antioxidant enzymes were studied in callus tissues of Hyoscyamus kurdicus. Calli initiated from leaf (LE), shoot (SE) and root (RE) explants, and sinusoidal vibrations at 0, 50, 100 and 150 Hz for 30 min were applied on the H. kurdicus calli. Results showed that sinusoidal vibration at 50 and 100 Hz promoted the growth rate as compared to control, and the optimum growth was found at 50 Hz. Sinusoidal vibration increased significantly protein and proline contents and activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POX) enzymes, and decreased total carbohydrate, H2O2 level and CAT activity as compared to control. Lipid peroxidation also decreased under sinusoidal vibration in all the calli, and the maximum percentage of decrease was observed at 50 Hz. Native polyacrylamide gel electrophoresis indicated different isoform profiles in vibration treated and untreated plants concerning antioxidant enzymes. The responses of different types of calluses were different, and RE callus showed the highest growth, membrane stability and antioxidant enzymes activity as compared to LE and SE calli. These results suggest sinusoidal vibration at optimum frequency could improve callus growth by induction of antioxidative enzymes activity and membrane stability in calli of H. kurdicus.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号