首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Predicting epidemics on directed contact networks
Authors:Meyers Lauren Ancel  Newman M E J  Pourbohloul Babak
Institution:Section of Integrative Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX 78712, USA. laurenmeyers@mail.utexas.edu
Abstract:Contact network epidemiology is an approach to modeling the spread of infectious diseases that explicitly considers patterns of person-to-person contacts within a community. Contacts can be asymmetric, with a person more likely to infect one of their contacts than to become infected by that contact. This is true for some sexually transmitted diseases that are more easily caught by women than men during heterosexual encounters; and for severe infectious diseases that cause an average person to seek medical attention and thereby potentially infect health care workers (HCWs) who would not, in turn, have an opportunity to infect that average person. Here we use methods from percolation theory to develop a mathematical framework for predicting disease transmission through semi-directed contact networks in which some contacts are undirected-the probability of transmission is symmetric between individuals-and others are directed-transmission is possible only in one direction. We find that the probability of an epidemic and the expected fraction of a population infected during an epidemic can be different in semi-directed networks, in contrast to the routine assumption that these two quantities are equal. We furthermore demonstrate that these methods more accurately predict the vulnerability of HCWs and the efficacy of various hospital-based containment strategies during outbreaks of severe respiratory diseases.
Keywords:Epidemiology  Contact network  Directed graph  Infectious disease  Hospital transmission
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号