首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Investigation of the antioxidant properties of hyperjovinol A through its Cu(II) coordination ability
Authors:Liliana Mammino
Institution:1. Department of Chemistry, University of Venda, P/bag X5050, Thohoyandou, 0950, South Africa
Abstract:Hyperjovinol A (2-methyl-1-(2,4,6-trihydroxy-3-(3-hydroxy-3,7-dimethyloct-6-enyl)phen yl)propan-1-one) is an acylated phloroglucinol isolated from Hypericum Jovis and exhibiting antioxidant properties comparable with those of the most common antioxidant drugs. The study models the compound’s antioxidant ability through its ability to coordinate a Cu2+ ion and reduce it to Cu+. Complexes with a Cu2+ ion were calculated for all the low energy and for representative high energy conformers of hyperjovinol A, placing the ion in turn near each of the electron-rich binding sites. The most stable complexes are those in which Cu2+ binds simultaneously to the O of the OH in the geranyl-type chain (R′) and the C═C double bond at the end of R′, or to the O of a phenol OH and the O of the OH in R′. The most stable complexes in which Cu2+ binds only to one site are those in which it binds to the C═C double bond at the end of R′ or to the sp2 O of the COCH(CH3)2 acyl group. Cu2+ is reduced to Cu+ in all complexes. Comparisons with corresponding complexes of other molecular structures in which one or more of the structural features of hyperjovinol A are modified attempt to elucidate the role, for the antioxidant ability, of relevant features of hyperjovinol A, like the presence and position of the OH or the C═C double bond in R′. Calculations at the DFT/B3LYP/6–31+G(d,p) level were performed for all the structures considered. Calculations utilizing the LANL2DZ pseudopotential for the Cu2+ ion were also performed for hyperjovinol A.
Figure
A low energy complex of hyperjovinol A in which the Cu ion binds to the sp2 O atom of the acyl chain and to the O atom of the OH in the geranyl-type chain
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号