首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Retinoic acid represses CYP7A1 expression in human hepatocytes and HepG2 cells by FXR/RXR-dependent and independent mechanisms
Authors:Shi-Ying Cai  Hongwei He  Trong Nguyen  Albert Mennone  James L Boyer
Institution:Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, CT, 06520
Abstract:Cholesterol 7α-hydroxylase (CYP7A1) plays a key role in maintaining lipid and bile salt homeostasis as it is the rate-limiting enzyme converting cholesterol to bile acids. Deficiency of CYP7A1 leads to hyperlipidemia in man and mouse. Hyperlipidemia is often seen in patients when treated with high-dose retinoic acid (RA), but the molecular mechanisms remain elusive. Our present study revealed that CYP7A1 mRNA expression is greatly repressed by RA in both human hepatocytes and HepG2 cells where increased fibroblast growth factor 19 (FGF19) and small heterodimer partner (SHP) expressions were also observed, suggesting farnesoid X receptor (FXR) and retinoid X receptor (RXR) were activated. Promoter reporter assays demonstrate that all-trans RA (atRA) specifically activated FXR/RXR. However, detailed molecular analyses indicate that this activation is through RXR, whose ligand is 9-cis RA. Knocking down of FXR or RXRα by small interference RNA (siRNA) in human hepatocytes increased CYP7A1 basal expression, but the repressive effect of atRA persisted, suggesting there are also FXR/RXR-independent mechanisms mediating atRA repression of CYP7A1 expression. Chromatin immunoprecipitation (ChIP) assay and cell transfection results indicate that PGC-1α plays a role in the FXR/RXR-independent mechanism. Our findings may provide a potential explanation for hyperlipidemic side effects observed in some patients treated with high-dose RA.
Keywords:nuclear receptor  cholesterol  bile acid  hyperlipidemia
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号