首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural and Functional Characterization of Diffusible Signal Factor Family Quorum-Sensing Signals Produced by Members of the Burkholderia cepacia Complex
Authors:Yinyue Deng  Ji'en Wu  Leo Eberl  Lian-Hui Zhang
Institution:Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Republic of Singapore,1. Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore,2. Department of Microbiology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland3.
Abstract:Previous work has shown that Burkholderia cenocepacia produces the diffusible signal factor (DSF) family signal cis-2-dodecenoic acid (C122, also known as BDSF), which is involved in the regulation of virulence. In this study, we determined whether C122 production is conserved in other members of the Burkholderia cepacia complex (Bcc) by using a combination of high-performance liquid chromatography, mass spectrometry, and bioassays. Our results show that five Bcc species are capable of producing C122 as a sole DSF family signal, while four species produce not only C122 but also a new DSF family signal, which was identified as cis,cis-11-methyldodeca-2,5-dienoic acid (11-Me-C122,5). In addition, we demonstrate that the quorum-sensing signal cis-11-methyl-2-dodecenoic acid (11-Me-C122), which was originally identified in Xanthomonas campestris supernatants, is produced by Burkholderia multivorans. It is shown that, similar to 11-Me-C122 and C122, the newly identified molecule 11-Me-C122,5 is a potent signal in the regulation of biofilm formation, the production of virulence factors, and the morphological transition of Candida albicans. These data provide evidence that DSF family molecules are highly conserved bacterial cell-cell communication signals that play key roles in the ecology of the organisms that produce them.The Burkholderia cepacia complex (Bcc) comprises a group of currently 17 formally named bacterial species that, although closely related, are phenotypically diverse (17, 22, 23). Strains of the Bcc are ubiquitously distributed in nature and have been isolated from soil, water, the rhizosphere of plants, industrial settings, hospital environments, and infected humans. Some Bcc strains have emerged as problematic opportunistic pathogens in patients with cystic fibrosis or chronic granulomatous disease, as well as in immunocompromised individuals (17). The clinical outcome of Bcc infections ranges from asymptomatic carriage to a fulminant and fatal pneumonia, the so-called “cepacia syndrome” (12, 17). Although all Bcc species have been isolated from both environmental and clinical sources, B. cenocepacia and B. multivorans are most commonly found in clinical samples (16).Many bacterial pathogens have evolved a cell-cell communication mechanism known as quorum sensing (QS) to coordinate the expression of virulence genes. In spite of their genetic differences, most Bcc species produce N-acylhomoserine lactone (AHL) QS signals (25). More recently, another QS signal molecule, cis-2-dodecenoic acid (BDSF), has been identified in B. cenocepacia (3). Subsequent studies showed that BDSF plays a role in the regulation of bacterial virulence (6, 20). Interestingly, the two QS systems appear to act in conjunction in the regulation of B. cenocepacia virulence, as a set of the AHL-controlled virulence genes are also positively regulated by BDSF (6). Furthermore, mutation of Bcam0581, which is required for BDSF biosynthesis, results in substantially retarded energy production and impaired growth in minimal medium (6), highlighting the dual roles of the QS system in the physiology of and infection by B. cenocepacia.BDSF is a structural analogue of cis-11-methyl-2-dodecenoic acid, which is a QS signal known as diffusible signal factor (DSF) originally identified from the plant bacterial pathogen Xanthomonas campestris pv. campestris (2, 24). Evidence is accumulating that DSF-type fatty acid signals represent a new family of QS signals, which are widespread among Gram-negative bacteria (10, 24). For example, DSF and seven structural derivatives were identified in supernatants of Stenotrophomonas maltophilia (8, 11), 12-methyl-tetradecanoic acid was shown to be produced by Xylella fastidiosa (18), and cis-2-decenocic acid was found to be synthesized by Pseudomonas aeruginosa (5). In addition, DSF-like activity has also been reported in a range of Xanthomonas species, including X. oryzae pv. oryzae and X. axonopodis pv. citri (1, 2, 4, 24), but the chemical structures of these DSF analogues remain to be determined. Unlike other known QS signals, such as AHL and AI-2 family signals, DSF and its analogues, including BDSF, are fatty acids and these fatty acid signals were collectively designated DSF family signals for the convenience of discussion (10). Considering the fact that the list of DSF family signal is expanding, we propose to designate cis-11-methyl-2-dodecenoic acid (DSF) 11-Me-C122 and cis-2-dodecenoic acid (BDSF) C122. This nomenclature is based on one of the fatty acid nomenclatures (13, 19) where the methyl (Me) substitution and its position are indicated first (for example, 11-Me indicates a methyl group on C-11 of the fatty acid carbon chain), followed by the length of the fatty acid carbon chain (C12 represents a 12-carbon fatty acid chain), and then the position of the double bond in the fatty acid chain (Δ2 indicates a double bond in the cis configuration at site 2, i.e., between C-2 and C-3 of the fatty acid carbon chain). In this way, it is convenient to say that 11-Me-C122 and C122 have identical 12-carbon fatty acid chains with a cis bond at the same site but differ in a methyl substitution on C-11. Following this nomenclature system, 12-methyl-tetradecanoic acid and cis-2-decenocic acid can be referred to as 12-Me-C14 and C102, respectively.DSF family signals have emerged as important factors in the regulation of virulence and biofilm formation in a wide range of bacterial pathogens (10). In this study, we have investigated the production of the DSF family signals in nine Bcc species. It is demonstrated that C122 is conserved in members of the Bcc and that 11-Me-C122 and a novel DSF family signal were also produced by some, but not all, of the Bcc strains investigated. This new signal was identified as cis,cis-11-methyldodeca-2,5-dienoic acid (11-Me-C122,5) by nuclear magnetic resonance (NMR) analysis and mass spectrometry. We have also investigated the biological significance of 11-Me-C122,5 in intraspecies and interspecies communication.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号